
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ODYSSEY: EMPOWERING MINECRAFT AGENTS WITH
OPEN-WORLD SKILLS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies have delved into constructing generalist agents for open-world
environments like Minecraft. Despite the encouraging results, existing efforts
mainly focus on solving basic programmatic tasks, e.g., material collection and
tool-crafting following the Minecraft tech-tree, treating the ObtainDiamond
task as the ultimate goal. This limitation stems from the narrowly defined set of
actions available to agents, requiring them to learn effective long-horizon strate-
gies from scratch. Consequently, discovering diverse gameplay opportunities in
the open world becomes challenging. In this work, we introduce ODYSSEY, a
new framework that empowers Large Language Model (LLM)-based agents with
open-world skills to explore the vast Minecraft world. ODYSSEY comprises three
key parts: (1) An interactive agent with an open-world skill library that consists of
40 primitive skills and 183 compositional skills. (2) A fine-tuned LLaMA-3 model
trained on a large question-answering dataset with 390k+ instruction entries de-
rived from the Minecraft Wiki. (3) A new agent capability benchmark includes
the long-term planning task, the dynamic-immediate planning task, and the au-
tonomous exploration task. Extensive experiments demonstrate that the proposed
ODYSSEY framework can effectively evaluate different capabilities of LLM-based
agents. All datasets, model weights, and code are publicly available to motivate
future research on more advanced autonomous agent solutions.

1 INTRODUCTION

Developing autonomous agents capable of performing open-world tasks represents a significant
milestone towards achieving artificial general intelligence (Savva et al., 2019; Reed et al., 2022;
Driess et al., 2023). These open-world tasks necessitate that agents interact with complex and dy-
namic environments, make decisions based on incomplete information, and adapt to unexpected
events. Early reinforcement learning agents (Tessler et al., 2017; Oh et al., 2017; Guss et al., 2019)
have demonstrated limited knowledge in such open-world setting. Furthermore, these agents of-
ten struggle with long-term planning, which is crucial for the fulfillment of intricate goals. Recent
breakthrough of Large Language Models (LLMs) (Hu et al., 2021; Achiam et al., 2023; Touvron
et al., 2023) have shown the potential to revolutionize various fields such as healthcare (Zhang et al.,
2023b; Yang et al., 2024b), robotics (Huang et al., 2022; Ahn et al., 2022; Singh et al., 2023), and
web services (Nakano et al., 2021; Deng et al., 2023; Iong et al., 2024), attributed to its capability
on endowing agents with expansive knowledge and sophisticated planning akin to human reason-
ing (Wei et al., 2022a; Wang et al., 2024a; Liang et al., 2023). However, the development of LLMs in
open-world tasks remains challenging due to the need for well-defined environments and measurable
benchmarks (Zhu et al., 2023; Wang et al., 2023a; Qin et al., 2023).

The popular Minecraft game features a vast and diverse world with various biomes, terrains, and
resources, making it an ideal testbed for evaluating the capabilities of autonomous agents in the
open-world setting (Guss et al., 2019). To facilitate the development of generalist agents in this
setting, MineRL (Guss et al., 2019) and MineDojo (Fan et al., 2022) introduced simulation bench-
marks built upon the sandbox Minecraft environment. The seminal work, Voyager (Wang et al.,
2023a), proposed an LLM-based agent to drive exploration in Minecraft. Subsequently, there has
been a surge of efforts to leverage the superior performance of LLMs to extend the capabilities of
such Minecraft agents (Zhu et al., 2023; Wang et al., 2023b; Zhou et al., 2024a; Wang et al., 2023c;
Qin et al., 2023). Despite recent advancements, existing works mainly focus on solving basic pro-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Long

Short

LLaMA 3

Minecraft
Wiki

Fine-tune Minecraft LLM Agent Capability Benchmark

Combat Zombie

Craft Diamond Sword

Mine Diamond

Open-World Skill Library

Interactive Agent

Plan

Critic

Actor

...

MineMA

Q&A Dataset
Generation

Fine-tune
LoRA

Skill
Retrieval

 Combat
Weapons

Equipment

Long-term Planning

 Farm
Planting

Breeding

Dynamic-immediate Planning

 Explore
Surviving

Creating

Autonomous Exploration

...

Figure 1: An overview of the proposed ODYSSEY framework. Odyssey consists of three key com-
ponents: (1) a fine-tuned LLaMA-3 model trained on a large-scale question-answering dataset; (2)
an interactive agent equipped with an extensive open-world skill library; (3) a novel agent capability
benchmark encompassing a variety of tasks.

grammatic tasks, often considering the ObtainDiamond task as the ultimate challenge. Basic
programmatic tasks refer to those constrained by the explicit dependencies following the Minecraft
tech-tree, such as collecting materials and crafting tools. Such tasks inherently only assess the abil-
ity of LLMs to prioritize crafting steps within a limited task space, rather than their potential for
complicated and diverse solutions. This limitation arises from the narrowly defined set of actions
available to agents (e.g., mouse and keyboard), which necessitates learning skills from scratch. Since
Minecraft is fundamentally resource-based, an agent must first learn to collect adequate resources
and tools to engage in creative play, which limits the exploration of diverse gameplay options. More-
over, methods like Voyager (Wang et al., 2023a) heavily rely on the powerful GPT-4 for high-quality
solutions, imposing a substantial cost burden on researchers who prefer open-source models.

In this work, we introduce ODYSSEY1, a novel framework that equips LLM-based agents with ad-
vanced open-world skills, enabling efficient interaction and exploration within the Minecraft envi-
ronment. ODYSSEY allows agents to move beyond basic programmatic tasks and focus more on
complex open-world challenges. As shown in Fig. 1, ODYSSEY comprises three key contributions:

1. We develop an LLM-based interactive agent with an open-world skill library, encompassing
40 primitive skills that serve as underlying interfaces and 183 compositional skills tailored for
complex and diverse tasks in an open-world setting. A recursive method improves skill execution
by checking prerequisites. The ODYSSEY agent consists of a planner for goal decomposition, an
actor for skill retrieval and subgoal execution, and a critic for feedback and strategy refinement.

2. We fine-tune the LLaMA-3 model (Touvron et al., 2023) for Minecraft agents using a compre-
hensive question-answering dataset. This involves generating a large-scale training dataset with
390k+ instruction entries from Minecraft Wikis, fine-tuning various sizes of the LLaMA-3 mod-
els using LoRA (Hu et al., 2021), and evaluating them with a custom multiple-choice dataset.

3. We introduce a new agent capability benchmark to evaluate different aspects of agent perfor-
mance in Minecraft, including the long-term planning task, the dynamic-immediate planning
task, and the autonomous exploration task. Extensive experiments demonstrate that the proposed
ODYSSEY framework provides a robust measure of agent effectiveness, showcasing the practical
advantages of our framework using the open-source models.

It is worth noting that our focus is not to design a new LLM-based agent architecture. Instead,
this work aims to provide a comprehensive framework for developing and evaluating autonomous
agents in open-world environments, enabling them to explore the vast and diverse Minecraft world.

1The Odyssey is a great ancient Greek epic poem attributed to Homer, which is now often used metaphori-
cally to describe a long adventurous journey (Oxford English Dictionary).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Knowledge Q&A

 First, you should ...

How to obtain milk?

Skill Retrieve

Code Action

Breed cow

Kill one cow with sword

Collect milk with bucket

Achivements

Ultimate Goals

Plan

Environment

Mineflayer

Primitive

Compositional I want to breed as
many as animals
like , or ,
and then collect
items from them.

Health
Pos

ExecuteValidate
[Lack of pre-requirements]
I cannot collect milk without a .Execution

Feedback [Environment feedback]
I could not find a to collect milk.

Self-validation: Self-reflection:

Critic
Since you only have ,
you might need the to
attract a for milk.

Based on changes of my
inventory, is my subgoal
successful? 🤔

Thought

You should analysis the
reason why my subgoal
is failed based on the
logs provided.

RethinkObservation

Skill Library

[Biome] snowy
[Time] day
[Nearby bocks] dirt, grass,
oak_log, oak_leaves, tall_grass,
cobblestone, crafting_table,
acacia_log
[Nearby entities] horse, pig
[Health]: 18.0/20
[Hunger]: 16.0/20
[Position]: x=2134.5, y=69.0,
z=769.5

[Inventory] oak_log, ...
[Equipment] helmet,
leggings, boots, ...
[Completed] mine ...

Update
Failed Successful Potential

My subgoal is to:
collect milk
last_inventory (16/36): ...
cur_inventory (18/36): ...

Figure 2: An illustrative diagram of the interactive agent following a planner-actor-critic architecture
based on the open-world skill library. The LLM Planner decomposes ultimate goals into specific
subgoals, while the LLM Actor then sequentially executes code actions for each subgoal using the
skill library. The LLM Critic evaluates these actions through self-validation and reflection, enabling
the agent to update its plan based on execution feedback.

We have open-sourced all parts of ODYSSEY and will continuously update the repository. We hope
this will enable other researchers to build upon our work, fostering further innovation and progress
in the development of autonomous agents.

2 OPEN-WORLD SKILL-BASED INTERACTIVE AGENT

ODYSSEY develops an LLM-based interactive agent with an open-world skill library, aiming to en-
hance the efficiency and adaptability of agents in complex Minecraft environments. The skill library
comprises 40 primitive skills and 183 compositional skills, while the LLM-based agent employs a
planner-actor-critic architecture to facilitate task decomposition, skill execution, and performance
feedback. The architecture of the interactive agent is depicted in Fig. 2. Full skill and prompt details
used in the LLM-based interactive agent are given in Appendix C.

2.1 OPEN-WORLD SKILL LIBRARY

Primitive skills encompass a series of underlying interfaces on top of Mineflayer JavaScript
APIs (PrismarineJS, 2023), divided into two main categories: 32 operational skills and 8 spatial
skills. This suite of skills exceeds the 18 primitive skills (all are operational skills) delineated in
Voyager (Wang et al., 2023a). Operational skills serve as foundational interfaces with parameter-
ized input, such as mine(·) for material collection and craft(·) for tool crafting. Additionally,
we pioneer 8 spatial skills that Voyager (Wang et al., 2023a) lacks, allowing for environmental in-
teractions based on the agent coordinates. Given that our work is conducted within a text-based
Minecraft environment (Wang et al., 2023a; Fan et al., 2022), spatial skills are crucial for handling
tasks that require precise positioning and orientation, especially in the absence of visual input.

Compositional skills encapsulate primitive skills into higher-level ones, functioning to address a va-
riety of basic programmatic tasks, such as mineDiamond and craftIronPickaxe. ODYSSEY
classifies 183 compositional skills into types like mineX, craftX, plantX, breedX, cookX,
etc. We use a recursive method to construct the skill library, simplifying complex task decomposi-
tion by ensuring prerequisites are met before skill execution. Taking mineDiamond as an example,
if the agent lacks an iron pickaxe, it will recursively execute craftIronPickaxe. This indicates
that our program internally manages the construction and execution order of skills through its recur-
sive method, thereby avoiding the need for the agent to engage in additional planning.

To facilitate efficient retrieval of skills in the skill library, we first generate a description for each skill
by calling the LLM and using the complete program code as a prompt. We then employ Sentence
Transformer (Reimers & Gurevych, 2019) to encode the skill description. This method transforms
text information into vector representations, facilitating semantic retrieval and enabling the agent to
find the most relevant skill description based on the context provided.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 PLANNER-ACTOR-CRITIC ARCHITECTURE

LLM Planner. The LLM Planner is responsible for developing a comprehensive plan, facilitat-
ing efficient exploration through long-term goal decomposition. The LLM Planner breaks down
high-level goals into specific low-level subgoals, each corresponding to a particular skill outlined in
Sec. 2.1. By addressing each subgoal in the plan, the ultimate goal can be progressively achieved.
The input prompt to the planner consists of several components: (1) Ultimate goals and behavioral
constraints. For example, “My ultimate goal is to ... Propose the current task only when you ensure
that you have all the necessary dependent items in inventory”. (2) States of the agent. This re-
flects the interaction between the agent and environment, such as hunger and health values, position
and nearby entities, etc. (3) Achievements of the agent. This includes the current inventory and
unlocked equipment, as well as previously successful and failed tasks.

LLM Actor. In the execution phase, the LLM actor is invoked to sequentially execute the subgoals
generated by the LLM planner within the Minecraft environment. This process utilizes the open-
world skill library to achieve these subgoals. The mapping from high-level subgoals to executable
skill code is accomplished through query context encoding and skill similarity retrieval. This process
includes: (1) Query context. The text-based subgoals generated by the LLM planner are encoded by
Sentence Transformer (Reimers & Gurevych, 2019) to vector representations as the query context.
(2) Similarity matching. The vector similarity between the query context and the skill descriptions
in the skill library is computed to determine semantic closeness. (3) Skill selection. The top-5
relevant skills with the highest scores are identified, and the actor agent selects the most appropriate
code for execution within the environment based on their descriptions.

LLM Critic. During action execution, it is critical for an agent to document its experiences, es-
pecially noting successful outcomes and failure points. This is crucial in open-world planning to
establish a feedback-informed system, which corrects initial plan discrepancies that can cause exe-
cution errors. For instance, achieving the animal breeding goal requires prerequisite crops for feed.
The LLM critic can assess action effectiveness by comparing expected and actual outcomes, provid-
ing insights for refining future strategies. We categorize feedback into three types: (1) Execution
feedback. This captures the progress of skill execution. For example, “No hoe in inventory. Craft a
hoe first!” not only highlights the reason for failure in hoeing farmland but also provides a guideline
to address this problem. (2) Self-validation. By presenting inventory changes post-action to the
LLM critic, we empower it to validate whether the skill has achieved its subgoal, eliminating the
need for manual checks. (3) Self-reflection. Simply confirming the completion of a subgoal is often
inadequate for correcting planning errors. The LLM critic also serves as an analyst, deducing the
cause of task failure by evaluating the current state of the agent and its environment. It then offers a
critique, suggesting a more efficient strategy for task completion.

3 FINE-TUNE MINECRAFT LLM

To improve agent performance in Minecraft, we fine-tune the LLaMA-3 model (Touvron et al., 2023)
using a large-scale Question-Answering (Q&A) dataset with 390k+ instruction entries sourced from
the Minecraft Wiki. ODYSSEY presents an effective procedure for converting a foundation model
into a domain-specific model, which involves dataset generation, model fine-tuning, and model eval-
uation. The detailed descriptions can be found in Appendix D.

Dataset Generation. We develop a GPT-assisted method to generate an instruction dataset for
Minecraft. First, we crawl relevant content from the Minecraft Wiki, excluding non-essential sec-
tions like history. The collected data is then categorized and separated into different files based on
their content type. Then we use GPT-3.5-Turbo (OpenAI, 2023) with different customized prompts
to automatically generate diverse Q&A pairs. Note that both the questions and answers were gener-
ated by GPT. These Q&A pairs are categorized into four types based on the nature of the answers:
short, normal, long, and boolean, yielding 390k+ entries. In contrast, the Wiki dataset released
by MineDojo (Fan et al., 2022) only collects Minecraft Wiki pages, without refining the content
and generating Q&A pairs for model training. STEVE (Zhao et al., 2023) introduces a non-public
dataset with 20k+ Q&A pairs, which is smaller than our dataset in terms of scale and diversity.

Model Fine-tuning. We employ LoRA (Hu et al., 2021) for model fine-tuning, which is a parameter-
efficient training technique. LoRA introduces small, trainable low-rank matrices to adapt a pre-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

trained neural network, enabling targeted updates without the need to retrain the entire model. Us-
ing LoRA, we fine-tune the LLaMA-3-8B-Instruct and LLaMA-3-70B-Instruct models with our
Minecraft dataset, resulting in the new models termed MineMA-8B and MineMA-70B, respectively.

Model Evaluation. In Minecraft, questions are often open-ended and can yield diverse answers;
therefore, conventional evaluation metrics (Papineni et al., 2002; Lin, 2004) may fall short. Mean-
while, common benchmarks (Wang et al., 2018; 2019; Hendrycks et al., 2021) are not suitable for
assessing the capabilities of expert models. Thus, we employed GPT-4 (Achiam et al., 2023) to gen-
erate two Multiple-Choice Question (MCQ) datasets based on different themes and keywords related
to Minecraft. These datasets can quantitatively evaluate the domain-specific expertise of models.

4 AGENT CAPABILITY BENCHMARK

CraftSword

CraftArmor

CombatMonster

Immediate Feedback

Dynamic Plan

Iterative Optimization

Resource Explore

Long-term Planning Task

Dynamic-immediate Planning Task

Autonomous Exploration Task

HoeFarmland

ShearSheep

MilkCow

Skill Library

Plan 1

Plan 2

Goal

Figure 3: Agent capability benchmark.

ODYSSEY presents a new benchmark for evaluating
agent capabilities within Minecraft, offering three task
types: long-term planning, dynamic-immediate plan-
ning, and autonomous exploration. It is notable that
these tasks cannot be solved by any single skill but de-
mand a sophisticated combination of multiple skills.
These tasks are set in various Minecraft scenarios, with
different tasks in the same scenario testing different
agent capabilities. For example, in the cooking sce-
nario, long-term planning requires formulating a com-
plete plan to locate and hunt a specific animal, whereas
dynamic-immediate planning involves selecting which
nearby animal to cook based on the immediate en-
vironment. Our benchmark provides a standardized
framework for evaluating agents, where the agent ca-
pability requirements for different tasks are shown in
Table 1. Please refer to Appendix E for more details.

Long-term Planning Task. We design a suite of combat scenarios to assess the long-term planning
capability of agents, requiring them to craft appropriate weapons and equipment to defeat various
monsters. These combat scenarios can be divided into single-type and multi-type monster scenarios.
For the single-type scenarios, we choose various unique monsters, each with its own attack styles,
movement patterns, and hostility levels. For the multi-type scenarios, we focus on typical monster
groupings encountered in the game. Agents must generate a comprehensive long-term plan, detail-
ing the sequence of crafting the necessary weapons and equipment for the assigned combat task.
Performance is measured by remaining health and time consumed during combat. After each battle,
agents can iteratively optimize their plan, learning from previous outcomes to improve performance
in subsequent rounds. To extend the scope of the long-term planning task beyond combat, we also
adopt animal husbandry and cooking scenarios, where agents are required to formulate detailed
plans for completing tasks related to specific animals.

Dynamic-immediate Planning Task. The dynamic-immediate planning task requires agents to
dynamically generate and execute plans based on immediate environmental feedback. Thus, we
design a suite of farming scenarios, where agents engage in activities like planting, cooking, and
animal husbandry. Although some scenarios are similar to the long-term planning task, the dynamic-
immediate planning task emphasizes reacting to real-time feedback like available resources and
nearby animals. Performance is evaluated through task completion time and success rates.

Autonomous Exploration Task. To test the exploratory capability of agents within open-world
settings, we design an autonomous exploration task in Minecraft. In this task, agents are required
to determine their subsequent objectives and execute the appropriate skills based on the game con-
text. The exploration task involves discovering and utilizing resources, while adapting to unexpected
events such as encounters with hostile monsters. Agents must adapt to these challenges by devel-
oping strategies for resource management and task prioritization. The performance metrics include
the number of distinct items obtained, the total items crafted, the recipes and advancements (R&A)
unlocked, and the distance traveled.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Specific agent capability requirements for different benchmark tasks, including Goal-based
Planning (GBP), Feedback-based Planning (FBP), Exploratory Planning (EP), Task Decomposi-
tion (TD), Resource Management (RM), Skill Retrieval (SR), Self-Reflection (Self-R), and Self-
Validation (Self-V). Please refer to Appendix E.4 for detailed descriptions of each capability.

Task GBP FBP EP TD RM SR Self-R Self-V
Single-Round Long-Term Planning Task ✓ × × ✓ × ✓ ✓ ✓
Multi-Round Long-Term Planning Task ✓ ✓ × ✓ × ✓ ✓ ✓

Dynamic-Immediate Planning Task ✓ ✓ × × ✓ ✓ ✓ ✓
Autonomous Exploration Task × ✓ ✓ × ✓ ✓ ✓ ✓

Table 2: Average execution time and success rate (SR) on 5 basic programmatic tasks in Minecraft.

Task Time (min) SR in 2min SR in 5min SR in 10min SR in 15min

Crafting Table 0.59 ± 0.79 95.8% 99.2% 100.0% 100.0%
Wooden Tool 0.95 ± 0.80 92.5% 99.2% 100.0% 100.0%
Stone Tool 1.48 ± 0.96 85.0% 97.5% 100.0% 100.0%
Iron Tool 4.43 ± 1.48 0.0% 76.7% 100.0% 100.0%
Obtain Diamond 6.48 ± 2.02 0.0% 21.7% 92.5% 100.0%

5 EXPERIMENTS

To demonstrate the effectiveness of the proposed ODYSSEY framework, we conduct experiments
on basic programmatic tasks and the agent capability benchmark. Our simulation environment is
built on top of Voyager (Wang et al., 2023a), providing a text-based interface for agents to interact
with Minecraft. We only use GPT-3.5 and GPT-4 for initial data generation, but all experiments are
conducted with the open-source LLaMA-3 model, significantly reducing costs compared to GPT-4-
based skill generation methods (Wang et al., 2023a;b). Notably, we do not employ GPT-4 in Voyager
due to the high cost, which we estimate would be in the thousands of dollars per experiment. Instead,
we reproduce Voyager using GPT-4o-mini and GPT-3.5 for comparison. More details are provided
in Appendix F. We aim to answer the following questions: (1) Can the open-world skill library
improve the efficiency of agents in Minecraft? (Sec. 5.1). (2) How well do agents with different
LLMs perform on the agent capability benchmark tasks? (Sec. 5.2). (3) What is the contribution of
different components of the ODYSSEY agent to its overall performance? (Sec. 5.3).

5.1 OPEN-WORLD SKILL LIBRARY

To demonstrate the superior capability of our open-world skill library in Minecraft, we first tested
it on 5 basic programmatic tasks from previous studies (Zhu et al., 2023). We conducted 120 re-
peated experiments on each task and recorded the average completion time for each task as well as
the success rates at different time points. The results in Table 2 demonstrate that our open-world
skill library efficiently handles basic programmatic tasks. Simple tasks achieve near-perfect success
within five minutes. Even for difficult tasks like obtaining a diamond, success rates rise from 21.7%
at five minutes to 92.5% at ten minutes, highlighting the effectiveness of the skill library.

5.2 AGENT CAPABILITY BENCHMARK

We evaluate the LLM-based agent on the long-term planning task, the dynamic-immediate planning
task, and the autonomous exploration task from the ODYSSEY benchmark. These tasks cover a
variety of complex gaming scenarios and require diverse solutions.

5.2.1 LONG-TERM PLANNING TASK

The long-term planning task assesses the agent capability to directly formulate and execute compre-
hensive plans over extended periods. For example, in the combat scenarios, the agent is required to
plan a list of weapons and equipment to craft based on the strength of different monsters, with the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Performance comparison of different models on the single-round long-term planning task.
“Health” refers to the remaining health points. “# LLM iters” is the number of LLM iterations (call-
ing LLM) required to complete the task. “Time (min)” refers to the minutes spent in both gathering
materials and crafting equipment to defeat different monsters. All evaluation metrics are calculated
only for successful tasks. ± corresponds to one standard deviation of the average evaluation over
successful tasks. Bold and italics mean the best and the second-best results. “-” indicates that health
is not a relevant metric in the scenarios. “N/A” indicates that all tasks fail.

Task Model Success Rate Health Time (min) # LLM Iters

1 zombie
Voyager 3 / 3 20.0 ± 0.0 9.9 ± 6.0 67.3 ± 41.7
LLaMA-3-8B 4 / 8 20.0 ± 0.0 8.3 ± 4.2 6.1 ± 4.1
MineMA-8B 8 / 8 19.4 ± 2.3 8.8 ± 5.4 10.0 ± 5.8

1 spider
Voyager 3 / 3 10.8 ± 8.0 9.4 ± 8.8 19.0 ± 1.4
LLaMA-3-8B 4 / 8 19.4 ± 1.0 12.1 ± 3.8 8.4 ± 3.5
MineMA-8B 8 / 8 19.3 ± 1.6 8.3 ± 6.7 15.2 ± 6.0

1 skeleton
Voyager 2 / 3 16.5 ± 0.0 7.4 ± 2.9 46.0 ± 32.0
LLaMA-3-8B 4 / 8 17.6 ± 2.7 8.1 ± 3.5 8.9 ± 3.7
MineMA-8B 8 / 8 13.6 ± 5.9 8.6 ± 7.3 12.1 ± 7.0

1 zomb-
ified piglin

Voyager 3 / 3 19.0 ± 1.4 14.5 ± 4.7 50.3 ± 26.2
LLaMA-3-8B 4 / 8 19.9 ± 0.4 9.2 ± 3.9 10.0 ± 4.2
MineMA-8B 8 / 8 18.7 ± 1.9 8.5 ± 6.1 11.7 ± 6.2

1 ender-
man

Voyager 2 / 3 11.0 ± 9.0 22.8 ± 1.7 28.0 ± 4.0
LLaMA-3-8B 2 / 8 15.1 ± 7.3 13.0 ± 3.0 6.8 ± 1.9
MineMA-8B 4 / 8 19.8 ± 0.5 10.4 ± 6.3 12.5 ± 5.4

1 zombie
villager

Voyager 2 / 3 20.0 ± 0.0 12.6 ± 2.0 50.0 ± 3.0
LLaMA-3-8B 7 / 8 19.6 ± 1.1 12.7 ± 5.3 11.0 ± 5.3
MineMA-8B 8 / 8 20.0 ± 0.0 9.0 ± 3.6 12.8 ± 6.1

1 cave
spider

Voyager 2 / 3 16.5 ± 3.5 10.0 ± 1.8 79.2 ± 29.0
LLaMA-3-8B 6 / 8 19.5 ± 1.2 12.0 ± 6.3 19.5 ± 1.2
MineMA-8B 7 / 8 20.0 ± 0.0 3.6 ± 2.6 8.6 ± 8.8

1 wither
skeleton

Voyager 1 / 3 20.0 ± 0.0 20.9 ± 0.0 100.0 ± 0.0
LLaMA-3-8B 6 / 8 13.2 ± 6.0 11.7 ± 3.7 12.3 ± 2.7
MineMA-8B 7 / 8 17.3 ± 3.7 11.0 ± 6.8 12.6 ± 6.9

1 zombie,
1 spider

Voyager 1 / 3 17.5 ± 0.0 5.9 ± 0.0 21.0 ± 0.0
LLaMA-3-8B 1 / 8 20.0 ± 0.0 8.5 ± 0.0 6.0 ± 0.0
MineMA-8B 5 / 8 16.4 ± 4.1 10.6 ± 6.7 12.0 ± 4.9

1 zombie,
1 skeleton

Voyager 2 / 3 19.0 ± 1.0 15.0 ± 8.6 40.5 ± 20.5
LLaMA-3-8B 1 / 8 0.2 ± 0.0 13.5 ± 0.0 9.0 ± 0.0
MineMA-8B 3 / 8 12.8 ± 2.8 14.0 ± 1.9 10.3 ± 2.8

3 zombies

Voyager 2 / 3 7.8 ± 4.2 8.2 ± 0.4 61.0 ± 29.0
LLaMA-3-8B 1 / 8 3.7 ± 0.0 14.3 ± 0.0 8.0 ± 0.0
MineMA-8B 1 / 8 5.2 ± 0.0 11.1 ± 0.0 14.0 ± 0.0

cook meat

Voyager 0 / 3 - N/A N/A
LLaMA-3-8B 1 / 8 - 20.3 ± 0.0 19.0 ± 0.0
Minema-8B 2 / 8 - 21.4 ± 1.2 30.0 ± 10.0

animal
husbandry

Voyager 1 / 3 - 19.0 ± 0.0 12.0 ± 0.0
LLaMA-3-8B 2 / 8 - 15.3 ± 7.6 31.0 ± 4.0
Minema-8B 3 / 8 - 16.8 ± 7.8 26.7 ± 16.2

goal of defeating the monster in as short a time as possible. We compared the performance of our
agent with both the fine-tuned MineMA-8B and the original LLaMA-3-8B models, and also the per-
formance of Voyager (Wang et al., 2023a) with GPT-4o-mini across these tasks. Moreover, we also
evaluate the performance of single-round and multi-round planning. The single-round test results in

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1 Zombie 1 Spider 1 Skeleton 1 Enderman
Task

0

3

6

9

12

15

18

Ti
m

e
(m

in
)

Round 1 Round 2 Round 3

Figure 4: Performance on the multi-round long-
term planning task. Note that all presented data
are from successful tasks.

Tab. 3 demonstrate that the fine-tuned MineMA-
8B model surpasses the original LLaMA-3-8B
model in terms of success rate and time effi-
ciency, albeit at the cost of more LLM itera-
tions. Moreover, our agent with the MineMA-
8B model can outperform Voyager with GPT-4o-
mini in most scenarios, indicating the effective-
ness of our fine-tuning strategy. The multi-round
test results in Fig. 4 demonstrate that the multi-
round planning strategy significantly improves
the time efficiency of the agent. This improve-
ment suggests that the agent is capable of itera-
tively refining its plans based on the outcomes of
previous encounters, thereby boosting its perfor-
mance in subsequent rounds.

5.2.2 DYNAMIC-IMMEDIATE PLANNING TASK

For the dynamic-immediate planning task, the agent is required to dynamically generate and execute
plans based on immediate environmental feedback. We compared our MineMA model with different
open-sourced LLMs, including GPT-4o, Qwen2-7B (Yang et al., 2024a) and Baichuan2-7B (Yang
et al., 2023). Moreover, we evaluate the performance of the MineMA-8B and the MineMA-70B
model to investigate the impact of model size on task performance. As shown in Tab. 4, the
MineMA-8B model outperforms the Baichuan2-7B and Qwen2-7B models in terms of success rate
and time efficiency. Moreover, the MineMA-70B model shows superior performance compared
with the MineMA-8B model. Across all open-sourced LLMs, MineMA-70B demonstrates higher
success rates and generally lower average execution times and LLM iterations. Additionally, our
MineMA can achieve performance similar to that of GPT-4o.

5.2.3 AUTONOMOUS EXPLORATION TASK

In the autonomous exploration task, the agent is required to explore the Minecraft world freely with-
out any specific goals. We compare our agent with different Minecraft-based agent methods (Voy-
ager (Wang et al., 2023a) and DEPS (Wang et al., 2023b)) and different LLM-based agent techniques
(ReAct (Yao et al., 2023) and AutoGPT (Significant-Gravitas, 2023)) on this task. Note that we re-
produced different LLM-based agent techniques following the same settings as in Voyager (Wang
et al., 2023a). As shown in Fig. 5, our agent with the MineMA-8B model can achieve superior
performance compared with all baselines, indicating that the agent can autonomously explore the
Minecraft world without specific goals. It is notable that our agent with the MineMA-8B model can
outperform Voyager (Wang et al., 2023a) with GPT-4o-mini or GPT-3.5.

5.3 ABLATION STUDY

We conduct ablation studies on two core components of the ODYSSEY agent, including the LLM
planner and the open-world skill library. The results are shown in Fig. 5. In the autonomous ex-
ploration task, the LLM planner is responsible for generating a comprehensive plan based on the
open-world skill library. The ablation study demonstrates that the planner is indispensable for the
agent to effectively navigate the complex Minecraft environment. Additionally, our experimental
results indicate that the absence of the open-world skill library significantly degrades performance.
Without the open-world skill library, the 8B LLM model alone is largely incapable of generating
executable codes for the agent. This underscores the critical role of the open-world skill library in
enabling the agent to perform complex tasks within the open-world setting of Minecraft.

6 RELATED WORKS

Minecraft agents have been widely studied in recent years to test the capabilities of autonomous
agents in open-world environments. Previous works focused on training Minecraft agents with
reinforcement learning (Tessler et al., 2017; Oh et al., 2017; Lin et al., 2022; Mao et al., 2022; Hafner

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Performance comparison of different models on the dynamic-immediate planning task. All
evaluation metrics are calculated only for successful tasks. Bold and italics mean the best and the
second-best results of all open-sourced LLMs (excluding GPT-4o). “N/A” indicates that all tasks
fail. Please refer to Appendix F.4 for easier visual inspection.

Task Model Success Rate Time (min) # LLM Iters

Collect Seeds

GPT-4o 5 / 5 1.2 ± 0.5 1.0 ± 0.0
Baichuan2-7B 2 / 5 1.8 ± 1.4 3.0 ± 2.8
Qwen2-7B 2 / 5 3.8 ± 1.5 4.5 ± 0.7
MineMA-8B 5 / 5 1.3 ± 1.4 1.4 ± 0.9
MineMA-70B 5 / 5 1.4 ± 1.6 1.0 ± 0.0

Hoe Farmland

GPT-4o 5 / 5 3.9 ± 3.3 5.8 ± 4.7
Baichuan2-7B 0 / 5 N/A N/A
Qwen2-7B 2 / 5 15.7 ± 16.2 19.5 ± 10.6
MineMA-8B 2 / 5 17.2 ± 14.7 26.5 ± 9.2
MineMA-70B 4 / 5 10.2 ± 6.7 11.8 ± 2.6

Shear Sheep

GPT-4o 5 / 5 4.7 ± 3.6 5.6 ± 6.5
Baichuan2-7B 1 / 5 26.0 ± 0.0 30.0 ± 0.0
Qwen2-7B 2 / 5 11.0 ± 2.8 10.8 ± 1.5
MineMA-8B 2 / 5 15.7 ± 10.9 13.0 ± 9.9
MineMA-70B 3 / 5 6.9 ± 7.8 11.0 ± 7.5

Milk Cow

GPT-4o 3 / 5 17.9 ± 8.3 20.3 ± 9.1
Baichuan2-7B 0 / 5 N/A N/A
Qwen2-7B 1 / 5 26.1 ± 0.0 30.0 ± 0.0
MineMA-8B 1 / 5 7.2 ± 0.0 7.0 ± 0.0
MineMA-70B 2 / 5 8.6 ± 10.0 10.0 ± 11.3

Cook Meat

GPT-4o 3 / 5 5.5 ± 2.7 5.0 ± 4.2
Baichuan2-7B 0 / 5 N/A N/A
Qwen2-7B 0 / 5 N/A N/A
MineMA-8B 1 / 5 25.6 ± 0.0 38.0 ± 0.0
MineMA-70B 2 / 5 20.2 ± 8.5 24.0 ± 2.8

Obtain Leather

GPT-4o 5 / 5 14.8 ± 10.4 13.0 ± 8.2
Baichuan2-7B 0 / 5 N/A N/A
Qwen2-7B 1 / 5 14.9 ± 0.0 16.0 ± 0.0
MineMA-8B 4 / 5 15.0 ± 8.7 17.8 ± 15.2
MineMA-70B 5 / 5 7.4 ± 7.8 8.8 ± 8.6

Make Sugar

GPT-4o 5 / 5 5.5 ± 3.6 7.0 ± 2.4
Baichuan2-7B 2 / 5 16.2 ± 15.6 22.0 ± 18.4
Qwen2-7B 2 / 5 15.4 ± 7.0 15.5 ± 9.2
MineMA-8B 5 / 5 4.3 ± 1.9 7.0 ± 1.9
MineMA-70B 5 / 5 4.3 ± 4.4 7.8 ± 4.0

Collect Water

GPT-4o 5 / 5 11.4 ± 1.6 27.3 ± 6.7
Baichuan2-7B 0 / 5 N/A N/A
Qwen2-7B 1 / 5 10.0 ± 0.0 10.0 ± 0.0
MineMA-8B 4 / 5 10.4 ± 3.0 8.8 ± 5.5
MineMA-70B 5 / 5 9.3 ± 4.8 9.4 ± 3.7

et al., 2023) or imitation learning (Baker et al., 2022; Cai et al., 2023; Lifshitz et al., 2023), which
are extensively used in the MineRL (Guss et al., 2019) competition to solve the ObtainDiamond
task. With the rapid development of LLMs, numerous studies leverage LLMs to enhance agent
capabilities (Zhang et al., 2023a; Zhu et al., 2023; Feng et al., 2023; Zhao et al., 2023; Wang et al.,
2023a;b; Zheng et al., 2023; Zhou et al., 2024a; Li et al., 2024; Yu & Lu, 2024; Wang et al., 2024b;
Cai et al., 2024). Among these, several works (Li et al., 2023; Yuan et al., 2023; Wang et al., 2023c;
Qin et al., 2023; Ding et al., 2023) employ LLMs to guide skill learning in Minecraft, enabling

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

DEPS with GPT-4o
Voyager with GPT-3.5-Turbo
Voyager with GPT-4o-mini

ReAct with GPT-4o-mini
AutoGPT with GPT-4o-mini
Odyssey with LLaMA3-8B

Odyssey with MineMA3-8B w/o Planner
Odyssey with MineMA3-8B w/o Skill Library
Odyssey with MineMA3-8B

0 20 40 60 80
Iteration Number

0

10

20

30

40

D
is

tin
ct

 It
em

s
O

bt
ai

ne
d

(a) Exploration Curves

0

10

20

30

40
Distinct Items Obtained

0

1000

2000

3000

4000
Distance Traveled

0

200

400

600
Items Crafted

0

50

100

150

200
R&A Unlocked

(b) Evaluation Metrics

Figure 5: Performance comparison of different models on autonomous exploration tasks. To make
the results in figures clearer for readers, we adopt a 50% confidence interval to plot the error region.

agents to act in a human-like way. However, these methods mainly focus on learning primitive skills
from scratch, lacking a reusable skill library. Voyager (Wang et al., 2023a) builds a skill library by
allowing the LLM to write its own skills. However, Voyager must rely on GPT-4 for high-quality
skill generation, incurring substantial costs. This expense can be prohibitive for many researchers.
In contrast, ODYSSEY provides an open-world skill library that agents can call upon, achieving
performance comparable to Voyager with GPT-4, but using only 8B LLMs. This makes ODYSSEY
significantly more accessible and cost-effective, enabling LLM-based agents to efficiently generate
complex policies for broader exploration.

Open-world environments have gained considerable attention from research communities (Cao
et al., 2020; Chevalier-Boisvert et al., 2018; Juliani et al., 2019; Shen et al., 2021; Srivastava et al.,
2022; Du et al., 2023). Minecraft, with its diverse tasks and mature game mechanics, has emerged
as an ideal test-bed for open-world tasks. Built on Minecraft, MineRL (Guss et al., 2019) imple-
ments a simulation environment for agent learning. MineDojo (Fan et al., 2022) further extends
MineRL with thousands of diverse tasks. MCU (Lin et al., 2023) collects a variety of atom tasks,
offering a method to generate infinite tasks by combining the atom tasks. However, existing bench-
marks mainly focus on providing basic programmatic tasks to evaluate agents learned from scratch.
Our ODYSSEY benchmark is built on top of the skill library, enabling the agents to bypass basic
programmatic tasks and focus on complex open-world challenges.

7 CONCLUSION

This work proposes ODYSSEY to empower agents with open-world skills in the Minecraft environ-
ment. We introduce (1) an interactive agent endowed with an extensive open-world skill library com-
prising various primitive skills and compositional skills; (2) a fine-tuned LLaMA-3 model, trained on
a large-scale question-answering dataset sourced from the Minecraft Wiki; (3) a new agent capabil-
ity benchmark that encompasses tasks requiring long-term planning, dynamic-immediate planning,
and autonomous exploration. The public availability of all datasets, model weights, and code will
facilitate future research in the development of autonomous agents. We hope that ODYSSEY will
inspire further innovation and progress in the field of autonomous agent development.

Limitations and Future Works. The proposed open-world skill library enables the use of open-
source LLMs as the foundation for agents to call upon skills, avoiding the high costs associated with
previous work using GPT-4 (Wang et al., 2023a; Li et al., 2023; Qin et al., 2023). However, the open-
source LLMs are prone to generating hallucinations, leading to a decrease in agent performance.
Thus, our future research will focus on employing retrieval-augmented generation to improve LLMs
in Minecraft. Additionally, this work focuses on developing and evaluating text-based LLMs in the
context of Minecraft, with visual aspects currently out of scope. Looking ahead, we plan to integrate
visual understanding into the skill library to enhance the agent capabilities.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. In NeurIPS, pp. 24639–24654, 2022.

Shaofei Cai, Zihao Wang, Xiaojian Ma, Anji Liu, and Yitao Liang. Open-world multi-task control
through goal-aware representation learning and adaptive horizon prediction. In CVPR, pp. 13734–
13744, 2023.

Shaofei Cai, Zihao Wang, Kewei Lian, Zhancun Mu, Xiaojian Ma, Anji Liu, and Yitao Liang.
Rocket-1: Master open-world interaction with visual-temporal context prompting. arXiv preprint
arXiv:2410.17856, 2024.

Tianshi Cao, Jingkang Wang, Yining Zhang, and Sivabalan Manivasagam. Babyai++: Towards
grounded-language learning beyond memorization. arXiv preprint arXiv:2004.07200, 2020.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. In ICLR, 2018.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. In NeurIPS, pp. 28091–28114, 2023.

Ziluo Ding, Hao Luo, Ke Li, Junpeng Yue, Tiejun Huang, and Zongqing Lu. Clip4mc: An rl-friendly
vision-language model for minecraft. arXiv preprint arXiv:2303.10571, 2023.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. In ICML, pp. 8469–8488, 2023.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In ICML, volume 202, pp. 8657–8677, 2023.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In NeurIPS, pp. 18343–18362, 2022.

Yicheng Feng, Yuxuan Wang, Jiazheng Liu, Sipeng Zheng, and Zongqing Lu. Llama rider: Spurring
large language models to explore the open world. arXiv preprint arXiv:2310.08922, 2023.

William H Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela
Veloso, and Ruslan Salakhutdinov. Minerl: a large-scale dataset of minecraft demonstrations.
In IJCAI, pp. 2442–2448, 2019.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In ICLR, 2021.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In ICLR, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Tomas Jackson, Noah Brown, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models. In CoRL, pp. 1769–1782, 2022.

Iat Long Iong, Xiao Liu, Yuxuan Chen, Hanyu Lai, Shuntian Yao, Pengbo Shen, Hao Yu, Yuxiao
Dong, and Jie Tang. OpenWebAgent: An open toolkit to enable web agents on large language
models. In ACL, pp. 72–81, 2024.

Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, Jonathan Harper, Ervin Teng, Hunter Henry,
Adam Crespi, Julian Togelius, and Danny Lange. Obstacle tower: A generalization challenge in
vision, control, and planning. In IJCAI, pp. 2684–2691, 2019.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, et al. Autowebglm: A large language model-based web
navigating agent. In SIGKDD, pp. 5295–5306, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In NeurIPS, volume 33,
pp. 9459–9474, 2020.

Hao Li, Xue Yang, Zhaokai Wang, Xizhou Zhu, Jie Zhou, Yu Qiao, Xiaogang Wang, Hongsheng Li,
Lewei Lu, and Jifeng Dai. Auto mc-reward: Automated dense reward design with large language
models for minecraft. arXiv preprint arXiv:2312.09238, 2023.

Zaijing Li, Yuquan Xie, Rui Shao, Gongwei Chen, Dongmei Jiang, and Liqiang Nie. Optimus-
1: Hybrid multimodal memory empowered agents excel in long-horizon tasks. arXiv preprint
arXiv:2408.03615, 2024.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence,
and Andy Zeng. Code as policies: Language model programs for embodied control. In IEEE
International Conference on Robotics and Automation, pp. 9493–9500, 2023.

Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, and Sheila McIlraith. Steve-1: A generative
model for text-to-behavior in minecraft. In NeurIPS, pp. 69900–69929, 2023.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Haowei Lin, Zihao Wang, Jianzhu Ma, and Yitao Liang. Mcu: A task-centric framework for open-
ended agent evaluation in minecraft. arXiv preprint arXiv:2310.08367, 2023.

Zichuan Lin, Junyou Li, Jianing Shi, Deheng Ye, Qiang Fu, and Wei Yang. Juewu-mc: Playing
minecraft with sample-efficient hierarchical reinforcement learning. In IJCAI, pp. 3257–3263,
2022.

Xing Han Lu, Zdeněk Kasner, and Siva Reddy. WebLINX: Real-world website navigation with
multi-turn dialogue. In ICML, 2024.

Hangyu Mao, Chao Wang, Xiaotian Hao, Yihuan Mao, Yiming Lu, Chengjie Wu, Jianye Hao, Dong
Li, and Pingzhong Tang. Seihai: A sample-efficient hierarchical ai for the minerl competition.
In Proceedings of the International Conference on Distributed Artificial Intelligence, pp. 38–51,
2022.

Heiko Mosemann and Friedrich M Wahl. Automatic decomposition of planned assembly sequences
into skill primitives. IEEE transactions on Robotics and Automation, 17(5):709–718, 2001.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task generalization with
multi-task deep reinforcement learning. In ICML, pp. 2661–2670, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

OpenAI. Introducing chatgpt. 2023.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the Annual meeting of the Association for
Computational Linguistics, pp. 311–318, 2002.

Mikkel Rath Pedersen, Lazaros Nalpantidis, Rasmus Skovgaard Andersen, Casper Schou, Simon
Bøgh, Volker Krüger, and Ole Madsen. Robot skills for manufacturing: From concept to industrial
deployment. Robotics and Computer-Integrated Manufacturing, 37:282–291, 2016.

PrismarineJS. Mineflayer: Create minecraft bots with a powerful, stable, and high level javascript
api. https://github.com/PrismarineJS/mineflayer, 2023.

Yiran Qin, Enshen Zhou, Qichang Liu, Zhenfei Yin, Lu Sheng, Ruimao Zhang, Yu Qiao, and Jing
Shao. Mp5: A multi-modal open-ended embodied system in minecraft via active perception.
arXiv preprint arXiv:2312.07472, 2023.

Scott E. Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom
Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell,
Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent. arXiv preprint
arXiv:2205.06175, 2022.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In EMNLP, pp. 3982–3992, 2019.

Manolis Savva, Jitendra Malik, Devi Parikh, Dhruv Batra, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu, and Vladlen Koltun. Habitat: A
platform for embodied AI research. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 9338–9346, 2019.

Dhruv Shah, Michael Robert Equi, Błażej Osiński, Fei Xia, Brian Ichter, and Sergey Levine. Nav-
igation with large language models: Semantic guesswork as a heuristic for planning. In CoRL,
volume 229, pp. 2683–2699, 2023.

Bokui Shen, Fei Xia, Chengshu Li, Roberto Martín-Martín, Linxi Fan, Guanzhi Wang, Clau-
dia Pérez-D’Arpino, Shyamal Buch, Sanjana Srivastava, Lyne Tchapmi, Micael Tchapmi, Kent
Vainio, Josiah Wong, Li Fei-Fei, and Silvio Savarese. igibson 1.0: A simulation environment for
interactive tasks in large realistic scenes. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 7520–7527, 2021.

Significant-Gravitas. Autogpt: Build & use ai agents. https://github.com/
Significant-Gravitas/AutoGPT, 2023.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans
using large language models. In ICRA, pp. 11523–11530, 2023.

Sanjana Srivastava, Chengshu Li, Michael Lingelbach, Roberto Martín-Martín, Fei Xia, Kent Elliott
Vainio, Zheng Lian, Cem Gokmen, Shyamal Buch, Karen Liu, Silvio Savarese, Hyowon Gweon,
Jiajun Wu, and Li Fei-Fei. Behavior: Benchmark for everyday household activities in virtual,
interactive, and ecological environments. In CoRL, pp. 477–490, 2022.

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel Mankowitz, and Shie Mannor. A deep hierarchi-
cal approach to lifelong learning in minecraft. In AAAI, pp. 1553–1561, 2017.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
ICLR, 2018.

13

https://github.com/PrismarineJS/mineflayer
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. In NeurIPS, pp. 3261–3275, 2019.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023a.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on large
language model based autonomous agents. Frontiers of Computer Science, 18(6):186345, 2024a.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Shawn Ma, and Yitao Liang. De-
scribe, explain, plan and select: interactive planning with llms enables open-world multi-task
agents. In NeurIPS, pp. 34153–34189, 2023b.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin,
Zhaofeng He, Zilong Zheng, Yaodong Yang, et al. Jarvis-1: Open-world multi-task agents with
memory-augmented multimodal language models. arXiv preprint arXiv:2311.05997, 2023c.

Zihao Wang, Shaofei Cai, Zhancun Mu, Haowei Lin, Ceyao Zhang, Xuejie Liu, Qing Li, Anji Liu,
Xiaojian Ma, and Yitao Liang. Omnijarvis: Unified vision-language-action tokenization enables
open-world instruction following agents. In NeurIPS, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In NeurIPS, pp. 24824–24837, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In NeurIPS,
pp. 24824–24837, 2022b.

Xinrun Xu, Yuxin Wang, Chaoyi Xu, Ziluo Ding, Jiechuan Jiang, Zhiming Ding, and Börje F Karls-
son. A survey on game playing agents and large models: Methods, applications, and challenges.
arXiv preprint arXiv:2403.10249, 2024.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv preprint
arXiv:2309.10305, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024a.

Songhua Yang, Hanjie Zhao, Senbin Zhu, Guangyu Zhou, Hongfei Xu, Yuxiang Jia, and Hongying
Zan. Zhongjing: Enhancing the chinese medical capabilities of large language model through
expert feedback and real-world multi-turn dialogue. In AAAI, pp. 19368–19376, 2024b.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In ICLR, 2023.

Shu Yu and Chaochao Lu. Adam: An embodied causal agent in open-world environments. arXiv
preprint arXiv:2410.22194, 2024.

Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie, Penglin Cai, Hao Dong, and Zongqing
Lu. Skill reinforcement learning and planning for open-world long-horizon tasks. arXiv preprint
arXiv:2303.16563, 2023.

Chi Zhang, Penglin Cai, Yuhui Fu, Haoqi Yuan, and Zongqing Lu. Creative agents: Empowering
agents with imagination for creative tasks. arXiv preprint arXiv:2312.02519, 2023a.

Hongbo Zhang, Junying Chen, Feng Jiang, Fei Yu, Zhihong Chen, Guiming Chen, Jianquan Li, Xi-
angbo Wu, Zhiyi Zhang, Qingying Xiao, Xiang Wan, Benyou Wang, and Haizhou Li. Huatuogpt,
towards taming language model to be a doctor. In EMNLP, pp. 10859–10885, 2023b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Zhonghan Zhao, Wenhao Chai, Xuan Wang, Li Boyi, Shengyu Hao, Shidong Cao, Tian Ye, Jenq-
Neng Hwang, and Gaoang Wang. See and think: Embodied agent in virtual environment. arXiv
preprint arXiv:2311.15209, 2023.

Sipeng Zheng, Jiazheng Liu, Yicheng Feng, and Zongqing Lu. Steve-eye: Equipping llm-based
embodied agents with visual perception in open worlds. In ICLR, 2023.

Enshen Zhou, Yiran Qin, Zhenfei Yin, Yuzhou Huang, Ruimao Zhang, Lu Sheng, Yu Qiao, and
Jing Shao. Minedreamer: Learning to follow instructions via chain-of-imagination for simulated-
world control. arXiv preprint arXiv:2403.12037, 2024a.

Gengze Zhou, Yicong Hong, and Qi Wu. Navgpt: Explicit reasoning in vision-and-language navi-
gation with large language models. In AAAI, volume 38, pp. 7641–7649, 2024b.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li,
Lewei Lu, Xiaogang Wang, et al. Ghost in the minecraft: Generally capable agents for open-world
enviroments via large language models with text-based knowledge and memory. arXiv preprint
arXiv:2305.17144, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Appendix

Table of Contents
A Discussion on Societal Impacts 17

B Discussion on Migrating Odyssey to Other Domains 17

C Open-World Skill-based Interactive Agent 17
C.1 Open-World Skill Library . 17
C.2 LLM Planner . 19
C.3 LLM Actor . 23
C.4 LLM Critic . 24

D Fine-tune Minecraft LLM 25
D.1 Dataset Generation . 25
D.2 Model Fine-tuning . 30
D.3 Model Evaluation . 30

E Agent Capability Benchmark 33
E.1 Long-term Planning Task . 33
E.2 Dynamic-immediate Planning Task . 33
E.3 Autonomous Exploration Task . 33
E.4 Specific Agent Capability Requirements for Different Tasks 34

F Experiments 34
F.1 Experimental Details . 34
F.2 Agent Capability Benchmark . 35
F.3 Ablation Study . 36
F.4 Results . 38

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A DISCUSSION ON SOCIETAL IMPACTS

When developing autonomous embodied agents within Minecraft, the negative impacts are rela-
tively minimal. Minecraft provides a controlled environment to test these technologies. Concerns
include potential over-reliance by players, reducing their exploratory and creative thinking, minor
data privacy issues due to the collection of anonymized player data, and possible impacts on game
balance, particularly in multiplayer settings. Overall, Minecraft is an ideal experimental platform
where these mild negative impacts can be effectively managed.

B DISCUSSION ON MIGRATING ODYSSEY TO OTHER DOMAINS

The skill library designed for Minecraft is built with modularity and generalizability in mind, al-
lowing for potential adaptation to other domains such as web navigation (Lai et al., 2024; Lu et al.,
2024), robot manipulation (Mosemann & Wahl, 2001; Pedersen et al., 2016; Liang et al., 2023;
Singh et al., 2023), robot navigation (Zhou et al., 2024b; Shah et al., 2023), and other game-playing
environments (Xu et al., 2024). These skills abstract underlying actions and focus on high-level
interactions, allowing them to be adapted to different environments by redefining low-level actions
without changing the overall structure of the skill library. Even without direct API access, basic
action spaces (e.g., keyboard and mouse operations in games, or movement operations in robotics)
can be employed to construct primitive skills. Prior research in robotic manipulation, including
CaP (Liang et al., 2023) and ProgPrompt (Singh et al., 2023), demonstrates how primitive skills
such as picking and placing objects or opening containers can be built from basic actions. More-
over, we believe that the concept of "skills" should extend beyond code APIs to include knowledge
from various sources. For example, handbooks can provide informational segments treated as skills,
retrievable by LLMs using techniques like retrieval-augmented generation (Lewis et al., 2020), en-
hancing decision-making.

To fine-tune the LLaMA-3 model for the Minecraft agent, we crawled the Minecraft Wiki and used
a GPT-assisted approach to generate an instruction dataset. Researchers in other domains can repli-
cate this process to create their own instruction datasets. To facilitate this, we have open-sourced our
Minecraft Wiki crawler on Github, which can be easily modified to crawl similar Wiki websites for
other domains. Additionally, our benchmark tasks evaluate agent performance from three perspec-
tives: long-term planning, dynamic-immediate planning, and autonomous exploration. These di-
mensions effectively assess the capabilities of open-world autonomous agents. Researchers in other
domains can adopt these perspectives to design comprehensive evaluation tasks for their needs.

C OPEN-WORLD SKILL-BASED INTERACTIVE AGENT

C.1 OPEN-WORLD SKILL LIBRARY

C.1.1 PRIMITIVE SKILLS

Primitive skills encompass a series of underlying interfaces on top of Mineflayer JavaScript
APIs (PrismarineJS, 2023), divided into two main categories: 32 operational skills and 8 spatial
skills. In addition to Voyager’s 18 operational skills Wang et al. (2023a), 14 operational skills im-
plemented by us are presented as follows:

• plantSeeds(bot, type): Let the agent find the nearest farmland and plant a par-
ticular kind of seed.

• feedAnimals(bot, type, count=1): Let the agent find the nearest animals of a
particular species and numbers and feed them with the appropriate food.

• killAnimal(bot, type): Let the agent kill a particular kind of animal using the
best sword in its inventory.

• killMonsters(bot, type, count=1): Let the agent kill monsters nearby of a
particular species and numbers using the best sword in its inventory.

• cookFood(bot, type, count=1): Let the agent cook food of a particular kind
and numbers using coal and furnace.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

• eatFood(bot, type): Let the agent eat a particular kind of food.
• equipArmor(bot): Let the agent equip the best armor(helmet, chestplate, leggings

and boots) in its inventory.
• equipSword/Pickaxe/Axe/Hoe/Shovel(bot): Let the agent equip the best

corresponding tool in its inventory.
• getLogs/PlanksCount(bot): Return the number of logs/planks (counted in seven

different categories) in the inventory.

Additionally, we pioneer 8 spatial skills that Voyager Wang et al. (2023a) lacks, allowing for en-
vironmental interactions based on the agent coordinates. The spatial skills implemented by us are
presented as follows:

• findSuitablePosition(bot): Let the agent find the best nearby location for plac-
ing devices such as a crafting table or furnace. The block must be minecraft:air and
at least one adjacent reference block exists.

• checkAdjacentBlock(bot, types, x, y, z): Check blocks adjacent to the
block at position (x,y,z). Return true if any of the adjacent blocks match the specified types.

• checkBlockAbove(bot, type, x, y, z): Check block above the block at po-
sition (x,y,z). Return true if the above block matches the specified type.

• checkBlocksAround(bot, type, x, y, z): Check blocks around the block
at position (x,y,z).Return true if any of the around blocks match the specified type.

• checkNearbyBlock(bot, types, x, y, z, r): Check blocks in a radius
around the block at position (x, y, z). Return true if any block within the radius matches the
specified types.

• checkNoAdjacentBlock(bot, types, x, y, z): Check adjacent blocks of
block at position (x,y,z). Return true if not all adjacent blocks are within the specified
types.

• goto(bot, x, y, z): Let the agent go to the corresponding position (x,y,z) until it
reaches the destination.

• getAnimal(bot, type, x, y, z): Let the agent attract a particular kind of ani-
mal to a particular position (x,y,z) with the appropriate food.

C.1.2 COMPOSITIONAL SKILLS

All compositional skills are encapsulated by the Mineflayer APIs and the aforementioned primitive
skills, while higher-level compositional skills recursively call lower-level ones. Fig. 6 illustrates the
nested relationships among the 13 skills required to complete the mineDiamond task. We classify
all compositional skills into main types as follows:

• mineX(bot): Equip the agent with the appropriate tools and find the nearest specific
block to mine it.

• craftX(bot): Let the agent collect the necessary materials and check if the crafting
table exists in the inventory (if needed), to craft a specific tool or something.

• smeltX(bot): Let the agent check the furnace and fuel, and smelt the specified materi-
als.

• collectX(bot): Similar to mineX, used to collect multiple quantities of a certain
item.

• makeX(bot): Similar to craftX, used to make food.
• cookX(bot): Similar to smeltX, used to cook food.
• plantX(bot): Let the agent check the inventory for seeds, collect them if not present,

and plant them in nearby farmland.
• breedX(bot): Let the agent check the inventory for the required corresponding feed,

find the nearest two animals, feed them, and facilitate their breeding.
• killX(bot): Let the agent equip the best sword in the inventory, find the nearest spe-

cific animal or monster, kill it, and collect the dropped items.
• placeX(bot): Let the agent place an item at its current or a nearby suitable location,

and if the item is not in inventory, craft it first.

Additionally, there are several other compositional skills aimed at executing specific behaviors, such
as catchFish, hoeFarmland, shearSheep, takeAndMoveMinecart.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

craftStickscraftWoodenPlanksmineWoodLog craftWoodenPickaxe

craftCraftingTablecraftIronPickaxe

smeltRawIron mineIronOre mineCoalOre craftFurnace

craftStonePickaxe mineCobblestone

mineDiamond

Figure 6: An illustrative diagram of the skill recursive method for the mineDiamond task. The
four colors depicted represent four different technological levels (wood, stone, iron, and diamond)
following the Minecraft tech-tree.

C.2 LLM PLANNER

ODYSSEY relies on LLMs to generate language-based plans. In our Minecraft experiment, we pro-
pose three novel tasks (long-term planning task, dynamic-immediate planning task and autonomous
exploration task) for agents to explore. Therefore we designate three types of prompt messages for
them respectively, offering LLM Planner the ability to generate different routines on different tasks.
The format of the prompt is presented thus:

• "SYSTEM" role: A high-level instruction that gives directions to the model behavior. It
sets an overall goal for the interaction and provides external information.

• "USER" role: Detailed information like environment, states and achievements of the agent
will be provided to the planner for the next immediate subgoals.

• "ASSISTANT" role: A guideline generated by the planner.

C.2.1 LONG-TERM PLANNING

We design a suite of combat tasks to assess the long-term planning capabilities of agents, where the
LLM Planner should plan to craft appropriate weapons and equipment to defeat monsters.

The input prompt to LLM consists of several components:

• Ultimate goals: The monsters that need to be defeated.
• Directives and behavior constraints that guarantee the proposed task is achievable and ver-

ifiable.
• Information of last combat: This ensures that the prompt is exposed to increasing amounts

of information over the combat and thus progressively advances towards more efficient
plans.

Long-term Planning System Prompt

—Overall goals—

Your goal is to generate the plan that can defeat all monsters while using the shortest
time. So, more is not always better when proposing your plan list.

—External information—

In Minecraft, combating with monsters requires weapons and armor. The weapon

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

options are limited to "sword", while the armor includes "helmet", "chestplate", "leggings",
and "boots". The materials for swords range from low to high level: wooden swords, stone
swords, iron swords, and diamond swords; The materials for armor range from low to high
level: iron, diamond. The higher the material level, the greater the attack damage of the
weapon and the better the protection effect of the armor. However, the higher the material
level, the more time it costs to collect.
Tips: Wooden, stone, iron and diamond are the only levels of sword; iron and diamond
are the only levels of armors; helmet, chestplate, leggings and boots are the only types of
armors; do not generate information that doesn’t relate to them.
After each round of combat, I will give you:
Equipment obtained from last round: ...
Health after last combat: ...
Critique: ...
Monster: The monsters you need to defeat.

—Directions—

The critique (if any) will tell you the subgoal list from the previous round and whether you
should trim or add to it. Remember to refer to the critique to adjust your task list. Next, you
will start a new combat task, the last round of equipment and health is only for planning
reference, not related to the current round. Plan from scratch!

—Behaviour constraints—

You must follow the following criteria:
1) Return a Python list of subgoals that can be completed in order to complete the specified
task.
2) Each subgoal should only start with "craft"! do not propose any other type of skills!
3) Each subgoal should follow a concise format "craft [material type] [equipment type]".
You should only respond in JSON format as described below:
["subgoal1", "subgoal2", "subgoal3", ...]
Ensure the response can be parsed by Python `json.loads`, e.g.: no trailing commas, no
single quotes, etc.

After finish collecting weapons and equipment, we also plan an efficient routine to combat with
monsters for higher survival rates. For example, monsters that are more harmful and aggressive
should be placed in a higher priority. The full prompt for re-ranking the combat order of monsters
is shown below.

Comabt Order System Prompt

You are a helpful assistant that generates the order of fighting monsters to defeat all monsters
specified by me.
I’ll give you a list of monsters, and you need to rearrange the order of monsters according to
how hard it is to beat them.
You should give priority to monsters that attack the player and do more damage, while
monsters that don’t actively attack the player or do less damage should be left behind.
Make sure your list includes all the monsters in your task.
The output format must be exactly same as the input, including the underline.
If your task is to combat a single type of monsters, return a list containing only that monster
as well.
You should only respond in JSON format as described below:
["quantity monster1", "quantity monster2", "quantity monster3", ...]
Ensure the response can be parsed by Python `json.loads`, e.g.: no trailing commas, no
single quotes, etc.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C.2.2 DYNAMIC-IMMEDIATE PLANNING

In this kind of task, agents are expected to adapt their plans based on the real-time feedback like
nearby resources and animals.

The input prompt to LLM consists of the following components:

• Ultimate goals: A suite of farming tasks, such as planting, harvesting, and animal hus-
bandry.

• The current states of agent: hunger and health values, position and nearby entities, etc.
• Achievements of the agent: the current inventory and unlocked equipment, as well as pre-

viously successful and failed tasks.

Dynamic-immediate Planning System Prompt

—Overall goals—

You are a helpful assistant that tells me the next immediate task to do in Minecraft.
My ultimate goal is to "goals".
Make sure that the proposed task is related to the ultimate goal, and do not propose unrelated
tasks!

—Directions—

You need to plan step by step towards your ultimate goal, so propose necessary pre-
requisite tasks first.
For example, "craft hoe" before "hoe farmland", "collect [type] seeds" and "hoe farmland"
before "plant seed", "kill [animalType]" before "cook meat", "craft shears" before "shear
sheep", "craft bucket" before "collect milk".
Propose the current task only when you ensure that you have all the necessary dependent
items in inventory.
Don’t ask for repetitive tasks. If you already have an item in your inventory, try not to
collect it repeatedly.
For example, when you already have a hoe in your inventory, propose "hoe farmland"
instead of "craft hoe" again.

—External information—

I will give you the following information:
Ultimate goal: ...
Reference: ...
Biome: ...
Nearby blocks: ...
Other blocks that are recently seen: ...
Nearby entities (nearest to farthest): ...
Health: Higher than 15 means I’m healthy.
Hunger: Higher than 15 means I’m not hungry.
Inventory (xx/36): ...
Logs: The execution logs in last task, you can refer to it to propose next task.
Completed tasks so far: ...
Failed tasks that are too hard: ...

—Behaviour constraints—

You must follow the following criteria:
1) Please be very specific about what resources I need to collect, what I need to farm, or
what animals I need to breed/kill.
2) The next task should follow a concise format, such as "craft [item]", "breed/kill [animal

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

type]", "cook/eat [food type]", "plant [seed type] seed" or some specific action "shear
sheep", "collect milk". Do not propose multiple tasks at the same time. Do not mention
anything else.
You should only respond in JSON format as described below:
{
"reasoning": "Based on the information I listed above, do reasoning about what the next task
should be",
"task": "The next task"
}
Ensure the response can be parsed by Python `json.loads`, e.g.: no trailing commas, no
single quotes, etc.

C.2.3 AUTONOMOUS EXPLORATION

In this task, the agent is required to explore the Minecraft world freely without any specific goals.
This poses a great challenge to the planner for maximal exploration. It should propose suitable tasks
based on the current state and environment, e.g., plan to obtain sand or cactus before wood if it finds
itself in a desert rather than a forest. The input prompt to LLM consists of several components:

• Guidelines encouraging diverse tasks.
• The current states of agent: hunger and health values, position and nearby entities, etc.
• Achievements of the agent: the current inventory and unlocked equipment, as well as pre-

viously successful and failed tasks.

Autonomous Exploration System Prompt

—Overall goals—

You are a helpful assistant that tells me the next immediate task to do in Minecraft.
My ultimate goal is to discover as many diverse things as possible, accomplish as many
diverse tasks as possible and become the best Minecraft player in the world.

—External information—

I will give you the following information:
Biome: ...
Time: ...
Nearby blocks: ...
Other blocks that are recently seen: ...
Nearby entities (nearest to farthest): ...
Health: Higher than 15 means I’m healthy.
Hunger: Higher than 15 means I’m not hungry.
Position: ...
Equipment: If I have better armor in my inventory, you should ask me to equip it.
Inventory (xx/36): ...
Chests: ...
Completed tasks so far: ...
Failed tasks that are too hard: ...

—Directions—

You must follow the following criteria:
1) You should act as a mentor and guide me to the next task based on my current learning
progress.
2) Please be very specific about what resources I need to collect, what I need to craft, or
what mobs I need to kill.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

3) The next task should follow a concise format, such as "Mine [block]", "Craft [item]",
"Smelt [item]", "Kill [mob]", "Cook [food]", "Equip" etc. It should be a single phrase. Do
not propose multiple tasks at the same time. Do not mention anything else.
4) The next task should be novel and interesting. I should look for rare resources, upgrade
my equipment and tools using better materials, and discover new things. I should not be
doing the same thing over and over again.
5) Don’t propose tasks that have already completed once or failed more than three times!
6) Do not ask me to build or dig shelter even if it’s at night. I want to explore the world and
discover new things. I don’t want to stay in one place.
7) Tasks that require information beyond the player’s status to verify should be avoided. For
instance, "Placing 4 torches" and "Dig a 2x1x2 hole" are not ideal since they require visual
confirmation from the screen. All the placing, building and trading tasks should be avoided.
Do not propose task starting with these keywords.
8) For wood-related tasks, you don’t need to emphasize the type of wood, just propose
"mine log" or "craft planks".

—Behaviour constraints—

You should only respond in JSON format as described below:
{
"reasoning": "Based on the information I listed above, do reasoning about what the next
task should be.",
"task": "The next task."
}
Ensure the response can be parsed by Python `json.loads`, e.g.: no trailing commas, no
single quotes, etc.

C.3 LLM ACTOR

In actor, the mapping from higher language subgoals S to lower executable codes is implemented
through query context encoding and similarity retrieval. We employ the following prompt during
the generation of query context (Question-Answer pairs).

Query Context Prompt

SYSTEM:
You are a helpful assistant that answer my question about Minecraft.
I will give you the following information:
Question: ...
You will answer the question based on the context (only if available and helpful) and your
own knowledge of Minecraft.
1) Start your answer with "Answer: ".
2) Answer "Answer: Unknown" if you don’t know the answer.
USER:
How to complete S in Minecraft?

After recalling the top-10 relevant skills with the highest scores, we require LLM to determine the
most appropriate code for execution within the environment based on their description. The full
prompt of code selection is shown in the following.

Skill Selection System Prompt

You are a helpful assistant that decides Mineflayer javascript code to complete any Minecraft
task specified by me.
I will give you
Task: The task I need to complete in this stage.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Programs: The description of relevant programs that may use to complete the task.
Program used in the last round: ...
Critique: ...

You will choose only one program based on the program description and critique. You
should only respond in the format as described below:
{
"program": "your selected program name",
"reason": "Reason you choose the program."
}
Ensure the response can be parsed by Python `json.loads`, e.g.: no trailing commas, no
single quotes, etc.
Please ensure that the program name you output should be exactly the same (case-inclusive)
as the information provided!

C.4 LLM CRITIC

The LLM critic should evaluate the success of the executed actions by comparing expected out-
comes with actual results, thereby providing valuable critiques for refining strategies in subsequent
iterations. We design a chain-of-thought (Wei et al., 2022b) prompting mechanism: We first require
LLM to reason about the task’s success or failure, then output a boolean variable representing the
execution result, and finally provide a critique to the agent if the task fails.

Critic System Prompt

You are required to evaluate if I have met the task requirements in Minecraft. Exceeding
the task requirements is also considered a success while failing to meet them requires you
to provide critique to help me improve.

I will give you the following information:
Task: The objective I need to accomplish.
Nearby blocks:
Entities:
Equipment: My tools, weapons and armor could sometimes be here.
Chests: If the task requires me to place items in a chest, you can find chest information
here.
Current inventory (xx/36): My final inventory after carry out the task.
Last inventory (xx/36): My inventory before carry out the task.
Chat log: The logs during carrying out the task.

Note that you only need to check the changes of my inventory to judge whether I meet
the task.
For a `craft [item]`task, all you need to do is checking if the item I need to craft is in my
current inventory or equipment. If in, you should judge it as a success and vice versa.
For a `mine [item]`task, you only need to check whether the item is in my current inventory
or has an increase over the last inventory.
For a `hoe`or `plant`task, you only need to check whether the `farmland`or `seed`is in
Nearby Blocks.
Do not judge the success of a `craft`task based on other materials I have!
You can only judge a task failure via chat log, not as a reason to judge a task’s success.
You should only respond in JSON format as described below:
{
"reasoning": "reasoning",
"success": boolean,
"critique": "critique",
}

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Ensure the response can be parsed by Python `json.loads`, e.g.: no trailing commas, no
single quotes, etc.

The input prompt to LLM consists of the following components:

1. Task proposed by the LLM Planner;
2. Environment feedback: We provide the agent with nearby blocks and entities that are re-

cently seen for high-quality critiques. We also give the log information during the execution
stage;

3. Achievements of the agent. We offer achievement of the agent like inventory and equipment
to assess the task’s completeness.

Critic User Prompt

Task: Mine 1 wood log
Nearby blocks: birch_leaves, oak_leaves, birch_log, oak_log
Equipment: [None, None, None, None, 'oak_sapling', None]
Chests: None
Current Inventory (2/36): 'oak_sapling': 1, 'oak_log': 1
Last Inventory (0/36):
Chat log: Mined 1 wood log.

D FINE-TUNE MINECRAFT LLM

For detailed code, datasets, and models used in this section, please visit our code for more informa-
tion. The overall fine-tuning framework is shown in Fig. 7.

Data
Generation

Minecraft
Wiki

TXT
Format

MD
Format

Data
Cleaning

GPT-
3.5-

turbo

Minecraft
Q&A

Dataset

Long

Short
Bool

Model
Fine-tuning

Model
Evaluation

 Llama-3-8B-Instruct
 Llama-3-70B-Instruct

MineMA

Page Driven
Prompt

Theme Driven
Prompt

GPT-4

MCQ Evaluation
Dataset v1

MCQ Evaluation
Dataset v2

Evaluation

Fi
ne

-tu
ne

 M
in

ec
ra

ft
LL

M

Normal

Fine-tune

LoRA

Figure 7: An overview of the fine-tune Minecraft LLM framework.

D.1 DATASET GENERATION

The code used in this section can be found on the supplementary material. The dataset produced in
this section has also been publicly available.

D.1.1 DATA CLEANING

For this study, we select two primary sources of information, the Minecraft Fandom Wiki (https:
//minecraft.fandom.com/wiki/Minecraft_Wiki) and the Minecraft Wiki (https:
//minecraft.wiki/).

25

https://minecraft.fandom.com/wiki/Minecraft_Wiki
https://minecraft.fandom.com/wiki/Minecraft_Wiki
https://minecraft.wiki/
https://minecraft.wiki/

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

For the Minecraft Fandom Wiki, we first crawl the content of all its pages and perform a preliminary
filtering on the resulting pages, removing pages that were obviously useless for our fine-tuning task,
such as game version information, and obtaining a series of JSON files. These files still contain a
significant amount of information that we do not need to create the dataset, so we carry out a data
cleaning process, extracting the text and table content of the original pages, storing them in a series
of TXT files, with each page corresponding to a TXT file. Through the above method, we obtain the
cleaned TXT format page information.

For Minecraft Wiki, we exclude a few categories that are useless for our fine-tuning task, such as
History, and crawl the content of all other categories’ pages. Similar to the process for Minecraft
Fandom Wiki, these pages also contain a lot of information that we didn’t need. We remove some
irrelevant sections such as Achievements, Advancements, and History, and only retained the text
and table content of other useful sections. After that, we store the processed data in markdown files
and perform segmentation operations based on the number of words in the file. We ensure that the
word count of the segmented file did not exceed the set limit without cutting the section block, thus
obtaining clean MD format page information.

D.1.2 Q&A PAIRS

In this study, we design four types of Q&A pairs for our training dataset as follows:

• Short Answer Q&A: Questions that can be directly answered with a word or phrase, such
as names, statistics, etc.

• Long Answer Q&A: Questions that require one or more complete sentences as answers.
These questions are suitable for explanatory or definitional responses, where a detailed
explanation or a clear definition is needed to fully address the question.

• Bool Answer Q&A: Questions that can be answered with a simple True or False.

• Normal Answer Q&A: QA pairs with no specific form restrictions, used to supplement the
dataset and ensure its comprehensiveness.

Some Q&A pair examples are shown as follows:

Short Answer Q&A

Q: What mobs spawn naturally in the desert biome during the day in Minecraft?
A: During the day in Minecraft, zombies in desert biomes are replaced by husks, which
inflict the Hunger effect and do not burn in sunlight.

Long Answer Q&A

Q: How does the use of light sources like torches and lava help in preventing mob spawning
in Minecraft?
A: In Minecraft, placing light sources such as torches, lava, glowstone, jack o’lanterns, sea
lanterns, and lanterns helps prevent hostile mob spawning. Mobs generally spawn in low
light conditions, and these light sources provide enough illumination to raise the light level
above the threshold needed for mob spawning. Torches are the most commonly used due to
their easy availability and simplicity in creating a well-lit perimeter around an area. Lava is
also effective but must be used cautiously as it can ignite nearby flammable materials.

Bool Answer Q&A

Q: Can skeletons shoot through bamboo?
A: F

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Normal Answer Q&A

Q: What are piglins in Minecraft?
A: Piglins are neutral mobs found in the Nether. They become hostile towards players unless
the player is wearing at least one piece of golden armor. They can be bartered with using
gold ingots for various items, and they wield either a golden sword or a crossbow for melee
or ranged attacks, respectively.

D.1.3 INSTRUCTION DATASETS GENERATION PROMPTS

We design four types of prompts for four types of Q&A pairs to generate instruction datasets by
using GPT-3.5-Turbo. Here are our prompts.

Short Answer Q&A prompt

System Message

You are a question-and-answer dataset generating expert, you are generating data that will be
used to train a large language model designed to address questions posed by users regarding
the game Minecraft, and from that, you will generate question-and-answer data samples,
each with a prompt/response pair.
You will do so in this format:
```
prompt
———–
prompt_goes_here
———–
response
———–
response_goes_here
———–
```
Your task is to generate at least 30 examples. Make sure your samples are unique and diverse,
yet high-quality and complex enough to train a well-performing model.

User Message

Your task is to generate 30 question-and-answer examples, and you should generate ques-
tions within the provided user text that can be directly answered with a word or phrase, such
as dates, names, statistics, etc. This involves identifying specific, concise information within
the text that can be succinctly responded to, ensuring that the answers are clear and directly
related to the questions asked. And you will do so in this format:
```
prompt
———–
prompt_goes_here
———–
response
———–
response_goes_here
———–
```
Please generate as many question and answer pairs as possible. Here is the user content:
{user_content}

Long Answer Q&A prompt

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

System Message

You are a question-and-answer dataset generating expert, you are generating data that will be
used to train a large language model designed to address questions posed by users regarding
the game Minecraft, and from that, you will generate question-and-answer data samples,
each with a prompt/response pair.
You will do so in this format:
```
prompt
———–
prompt_goes_here
———–
response
———–
response_goes_here
———–
```
Your task is to generate at least 20 examples. Make sure your samples are unique and diverse,
yet high-quality and complex enough to train a well-performing model.

User Message

Your task is to generate 20 question-and-answer examples. Identify questions within the
provided user text that require one or more complete sentences as answers. These questions
should be suitable for explanatory or definitional responses, where a detailed explanation or
a clear definition is needed to fully address the question. This involves crafting answers that
are comprehensive and informative, ensuring they adequately explain or define the subject
matter in question. And you will do so in this format:
```
prompt
———–
prompt_goes_here
———–
response
———–
response_goes_here
———–
```
Please generate as many question and answer pairs as possible. Here is the user content:
{user_content}

Bool Answer Q&A prompt

System Message

You are a question-and-answer dataset generating expert, you are generating data that will be
used to train a large language model designed to address questions posed by users regarding
the game Minecraft, and from that, you will generate question-and-answer data samples,
each with a prompt/response pair.
You will do so in this format:
```
prompt
———–
prompt_goes_here
———–
response
———–

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

response_goes_here
———–
```
Your task is to generate at least 10 examples. Make sure your samples are unique and diverse,
yet high-quality and complex enough to train a well-performing model.

User Message

Your task is to generate 10 question-and-answer examples. Look for questions within the
provided user text that can be answered with a simple True or False. This task involves
pinpointing statements or queries within the text that lend themselves to binary responses,
ensuring that the answers are straightforward and unambiguous, clearly indicating whether
the statement is true or false based on the information available. And you will do so in this
format:
```
prompt
———–
prompt_goes_here
———–
response
———–
response_goes_here
———–
```
Please generate as many question and answer pairs as possible. Here is the user content:
{user_content}

Normal Answer Q&A prompt

System Message

You are a question-and-answer dataset generating expert, you are generating data that will be
used to train a large language model designed to address questions posed by users regarding
the game Minecraft, and from that, you will generate question-and-answer data samples,
each with a prompt/response pair.
You will do so in this format:
```
prompt
———–
prompt_goes_here
———–
response
———–
response_goes_here
———–
```
Your task is to generate at least 20 examples. Make sure your samples are unique and diverse,
yet high-quality and complex enough to train a well-performing model.

User Message

Your task is to generate 20 question-and-answer examples. And you will do so in this format:
```
prompt
———–
prompt_goes_here

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

———–
response
———–
response_goes_here
———–
```
Please generate as many question and answer pairs as possible. Here is the user content:
{user_content}

D.2 MODEL FINE-TUNING

The code used in this section can be found on the supplementary material. MineMA-8B and
MineMA-70B series of models have also been publicly available .

In this study, we use the instruction dataset with 390,317 instruction entries mentioned above to
fine-tune the Minecraft Q&A expert models, using the LoRA fine-tuning method. We name the
series of fine-tuned models MineMA. The resulting models include MineMA-8B-v1, MineMA-8B-
v2, MineMA-8B-v3, derived from the base model LLama-3-8B-Instrument, and MineMA-70B-v1,
MineMA-70B-v2, derived from the base model LLama-3-70B-Instrument. MineMA-70B series of
models are fine-tuned on four A6000 GPUs, while the remaining models are fine-tuned on a single
A6000 GPU each. Among the models, MineMA-8B-v1 and MineMA-70B-v1 only undergo one
round of training without an evaluation process, while the other models are trained with multiple
rounds that incorporate an evaluation procedure. We use the EarlyStopping method to halt the
training process when there is no reduction in the evaluation loss over a series of evaluations, and
finally save the model which has the best performance. Some training parameters are shown in
Tab. 5.

Table 5: Training parameters for different MineMA models.

Model LoRA r LoRA alpha LoRA dropout Learning Rate Weight Decay Single Round?

MineMA-8B-v1 64 128 0.1 1E-04 1E-04 T
MineMA-8B-v2 32 64 0.1 1E-04 1E-04 F
MineMA-8B-v3 64 128 0.1 1E-04 1E-04 F
MineMA-70B-v1 16 32 0.1 1E-04 1E-04 T
MineMA-70B-v2 64 128 0.1 1E-04 1E-04 F

D.3 MODEL EVALUATION

The code used in this section can be found on the supplementary material. The datasets used in this
section have also been publicly available.

D.3.1 EVALUATION DATASETS CREATING PROCESS

In this study, we utilize GPT-4 to create two evaluation MCQ datasets: a multi-theme MCQ dataset
and a Wiki-based MCQ dataset. For the multi-theme MCQ dataset, we first summarize the following
Minecraft content themes:

Game Basics

Blocks and Items: Basic blocks, special blocks, tools, weapons, armor, etc.
Survival Mechanics: Health, hunger, experience levels, death and respawn, etc.

World Exploration

Biomes: Characteristics of different biomes, generated structures, unique resources, etc.
Terrain and Landforms: Features and resource distribution of different terrains.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Mobs and Interactions

Mobs: Characteristics and behaviors of passive, neutral, and hostile mobs.
Combat System: Monster types, combat tactics, weapons and equipment, enchantments,
potions, etc.
Trading and Villagers: Villager professions, trading mechanics, village structures, etc.

Survival Skills

Resource Gathering: Methods of obtaining various resources and their uses.
Crafting and Production: Usage of crafting tables, furnaces, etc., equipment crafting and
upgrading.
Farming and Animal Husbandry: Crop planting, animal breeding, automated farms, etc.

Building and Creativity

Building Styles: Various building styles and key points.
Building Techniques: Symmetry, proportion, detail handling in construction, etc.
Interior Decoration: Interior design, lighting, item placement, etc.
Redstone Mechanics: Redstone components, circuit design, automated devices, etc.

Special Dimensions

The Nether: Peculiarities of the Nether, unique blocks and mobs, special structures, etc.
The End: Characteristics of the End, Ender Dragon, cities, ships, etc.
Adventure and Exploration: Special generated structures like ocean monuments, woodland
mansions, ruins, fortresses, etc.

Then, we list different numbers of keywords for each theme based on the amount of relevant knowl-
edge content. According to the amount of information related to each keyword, we match a number
for each keyword, representing the number of multiple-choice questions to be generated based on
that keyword. After preparing the groundwork, we use GPT-4 to generate the multi-theme MCQ
dataset, totaling 1,050 multiple-choice questions. The relevant prompts are shown below, taking the
generation of multiple-choice questions in the Special Dimensions theme as an example:

System Message

You are an expert in generating Minecraft quiz questions. Your task is to create multiple-
choice questions about the game Minecraft based on the theme of "Special Dimensions"
and the provided keywords. The introduction of the theme of "Special Dimensions" is as
follows:
Special Dimensions:
The Nether: Peculiarities of the Nether, unique blocks and mobs, special structures, etc.
The End: Characteristics of the End, Ender Dragon, cities, ships, etc.
Adventure and Exploration: Special generated structures like ocean monuments, woodland
mansions, ruins, fortresses, etc.
Provide four answer options labeled A, B, C, and D. Only one option should be correct.
After the question and options, state the correct answer. Please format the output as follows:
Difficulty: Easy/Medium/Hard
Topic: Special Dimensions
Key Word: text
Question: Question text
Options: A.text B.text C.text D.text
Correct Answer: A/B/C/D
Ensure that the difficulty distribution of the questions and options is reasonable, and the
answers should be detailed and informative.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

User Message

Please generate some Minecraft multiple-choice questions based on the following 5 key-
words, covering three difficulty levels: simple, moderate, and difficult. The number after the
keyword represents how many multiple-choice questions to generate based on this keyword.
Keywords:
{keywords_go_here}
Ensure that the Q&A content is rich and accurate, and test the player’s understanding of the
game. Provide a balanced combination of simple, medium, and difficult questions. Generate
each question and answer in the given format. Here is an example:
Example:
Difficulty: Hard
Topic: Special Dimensions
Key Word: End Ship
Question: What exclusive item can be found in the End Ship in Minecraft?
Options: A. Netherite B. Dragon Egg C. Elytra D. Beacon
Correct Answer: C

For the Wiki-based MCQ dataset, we utilize GPT-4’s knowledge of Minecraft-related Wiki content
to create a set of multiple-choice questions that closely align with the information on the Wiki pages.
Firstly, we list 615 Minecraft-related keywords based on the importance of the relevant knowledge.
Afterwards, we generate a Wiki-based MCQ dataset using GPT-4 with designed prompts based on
these keywords, totaling 2,083 pieces of data. The prompts we used are as follows:

System Message

You are an expert in generating Minecraft multiple-choice questions. Your task is to create
multiple choice questions about the game Minecraft based on the provided keywords and
the information on the corresponding page on the Minecraft Wiki. Ensure that the source
of information for the multiple-choice questions you generate is the Minecraft Wiki, while
ensuring the objectivity and accuracy of the multiple-choice questions and ensuring good
quality.
Provide four answer options labeled A, B, C, and D. Only one option should be correct.
After the question and options, state the correct answer. Please format the output as follows:
Difficulty: Easy/Medium/Hard
Key Word: text
Question: Question text
Options: A.text B.text C.text D.text
Correct Answer: A/B/C/D
Ensure that the difficulty distribution of the questions and options is reasonable, and the
answers should be detailed and informative.

User Message

Please generate some Minecraft multiple-choice questions based on the following 5 key-
words, covering three difficulty levels: simple, moderate, and difficult. The number after the
keyword represents the minimum number of multiple-choice questions generated based on
the keyword. For important keyword, you should generate more questions.
Keywords:
{keywords_go_here}
Ensure the source of information for the multiple-choice questions you generate is the
Minecraft Wiki, while ensuring the objectivity and accuracy of the multiple-choice ques-
tions and ensuring good quality. Provide a balanced combination of simple, medium, and
difficult questions. Generate each question and answer in the given format, do not use '#'or
''.. Here is an example:
Example:
Difficulty: Medium

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Key Word: Dirt
Question: What happens when you right-click on a dirt block with a hoe?
Options: A. It turns into farmland B. It turns into grass C. It turns into a path block D.
Nothing happens
Correct Answer: A

D.3.2 EVALUATION RESULTS

We use the above two MCQ datasets to evaluate the MineMA series models and the corresponding
base models. Each model is tested 5 times with the two datasets. The results are shown in Tab. 6.

Table 6: The evaluation results based on the MCQ datasets.

Model Average Accuracy (Multi-theme) Average Accuracy (Wiki-based)

Llama-3-8b-Instruct 61.09% 54.38%
MineMA-8B-v1 62.69% 61.97%
MineMA-8B-v2 62.23% 62.09%
MineMA-8B-v3 62.99% 62.42%
Llama-3-70b-Instruct 77.41% 72.52%
MineMA-70B-v1 78.11% 73.03%
MineMA-70B-v2 75.68% 72.88%

E AGENT CAPABILITY BENCHMARK

E.1 LONG-TERM PLANNING TASK

In Minecraft, there are a total of 35 hostile creatures. We conducted experiments on both single-
monster combat tasks and combined combat tasks (up to three types of monsters), resulting in thou-
sands of different tasks that can all be implemented through the interfaces we provided.

• combatEnv(bot, h, r, y): Generates a hollow rectangular arena with a height of
h and a square base with side length 2r at altitude y, positioning the agent at the exact
center of this enclosed space. This configuration ensures controlled conditions for evalu-
ating combat scenarios, especially considering not being influenced by naturally spawning
monsters.

• summonMob(bot, n = 1, r, type): Facilitates the spawning of hostile creatures
around the bot. It randomly positions n monsters within a designated range (r to 2r along
the x and z axes) from the bot, allowing for the creation of varied combat tasks and enabling
comprehensive testing of bot performance under different tactical challenges.

E.2 DYNAMIC-IMMEDIATE PLANNING TASK

In Minecraft, many farming tasks require interaction with the environment and dynamic planning.
We propose a series of tasks that can be accomplished through our skill library, including hoeing
farmland, planting seeds, harvesting crops, making food, slaughtering animals, cooking meat, feed-
ing and breeding animals, among others. For example, in the task cook meat, if the agent is
informed that there is a chicken nearby, it should plan to "kill one chicken" rather than anything
else. Additionally, in the task milk cow, the agent must simultaneously monitor the appearance
of cows in the vicinity and gather materials to craft a bucket to collect the milk.

E.3 AUTONOMOUS EXPLORATION TASK

In Minecraft, autonomous exploration is the gameplay approach that most closely mimics how hu-
man players engage with the game. To evaluate the diversity of discoveries made by the agent
during autonomous exploration, we used "Distinct Items Obtained" as the primary evaluation met-
ric. The acquisition of a greater variety of items demonstrates more diverse exploratory behavior

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

by the agent. Additionally, based on statistical information and progress in-game achievements, we
calculated supplementary evaluation metrics including the "Distance Traveled" by the agent (sum-
ming walking, sprinting, climbing, swimming, and other forms of movement), the total number of
"Items Crafted" (the sum of all types of items obtained by crafting), and "Recipes and Achievements
Unlocked" (the sum of crafting recipes and game achievements unlocked).

E.4 SPECIFIC AGENT CAPABILITY REQUIREMENTS FOR DIFFERENT TASKS

This section provides an overview of the specific agent capabilities required for each task, laying the
foundation for a deeper understanding of how our benchmark evaluates different aspects of agent
performance. Different agent capabilities are detailed as follows:

• Goal-based Planning: This capability refers to the agent’s ability to formulate and execute com-
prehensive plans based on predefined goals. It involves understanding the given goals and devising
a step-by-step plan to achieve them over extended periods. This is critical for tasks such as the
long-term planning task, where agents need to craft weapons and equipment to defeat specific
monsters.

• Feedback-based Planning: This capability involves the agent’s ability to adapt its plans dynam-
ically based on environmental feedback. It is essential for tasks where environmental feedback is
crucial, such as in the dynamic-immediate planning task and the multi-round long-term planning
task, where agents must adjust their strategies in response to the outcomes of previous actions or
environmental changes.

• Exploratory Planning: This capability evaluates the agent’s ability to set its own goals and make
decisions independently in a complex environment. Agents must navigate, gather information, and
decide on objectives without predefined goals. This is central to the autonomous exploration task,
where agents explore the Minecraft world, discover resources, and adapt to unforeseen events.

• Task Decomposition: This capability refers to the agent’s ability to break down complex tasks
into specific, manageable sub-tasks. It is vital for the long-term planning task where agents need
to craft a sequence of items, requiring the breakdown of the end goal into a series of intermediate
steps.

• Resource Management: This capability involves the efficient allocation and utilization of avail-
able resources. Agents must maintain awareness of their inventory, manage assets effectively, and
identify which resources need to be gathered. This is particularly important in farming tasks and
autonomous exploration, where resource availability and management are crucial for subsequent
behavior.

• Skill Retrieval: This capability pertains to the agent’s ability to identify and choose the most
suitable skill from a set of options. Agents evaluate a list of relevant skills and select the one
that best fits the current environmental context and task requirements. All tasks require agents to
retrieve and apply relevant skills based on situational demands.

• Self-Reflection: This capability involves the agent’s ability to analyze and learn from the out-
comes of its actions. Simply confirming the completion of a subgoal is often inadequate for cor-
recting planning errors. The agent evaluates its performance, deduces the cause of task failures,
and suggests more efficient strategies for future tasks. This is particularly important in multi-round
tasks.

• Self-Validation: This capability enables the agent to autonomously confirm the success of its
actions against intended outcomes. By assessing inventory changes after actions, the agent ensures
that each step contributes towards the overarching objectives without external verification. This
capability is crucial for all tasks, as agents need to continuously ensure their actions align with the
objectives.

F EXPERIMENTS

F.1 EXPERIMENTAL DETAILS

We select the 1.19.4 version of Minecraft as the experimental environment. Within this virtual game
world, spatial measurements are determined by blocks, while temporal measurements are dictated

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

by ticks, each lasting 0.05 seconds. A single day-night cycle in the game is 24,000 ticks, equivalent
to 20 minutes in the real world, with 10 minutes of daytime, 7 minutes of nighttime, and a 3-minute
dawn/dusk transition (when both the sun and moon are visible in the sky). Additionally, the game’s
weather system randomly transitions between clear, rainy, thunderstorm, and snowy conditions,
adding dynamic changes to the environment. Players are born into a randomly generated massive
world, covering an area of 30,000,000 blocks × 30,000,000 blocks, which can be approximately
considered an infinite world without boundaries. Players start with no resources and must gather
everything from scratch that is beneficial for survival and completing the ultimate goal. When a
player character dies, it will respawn randomly within a 32-block radius of the death location on the
ground, and any collected items will not be dropped. Agents can connect to the game through local
networks or multiplayer servers. We have tested on Ubuntu 20.04, Windows 10, and macOS. In all
experiments of the agent capability benchmark, the "MineMA-8B" refers to "MineMA-8B-v3", and
the "MineMA-70B" refers to "MineMA-70B-v1".

We use the following Minecraft mods in our experiment. It is important to note that the version of
mods must be consistent with the game version, specifically 1.19.4.

• Fabric API: Basic Fabric APIs.
• Mod Menu: Used to manage all the mods that you download.
• Complete Config: Dependency of server pause.
• Multi Server Pause: Used to pause the server when waiting for LLM to reply.
• Better Respawn: Used for random respawning of player characters.

Considering the randomness of resource distribution in the Minecraft world, we ensure that the agent
starts from different locations in the game world before each round of experiments. We implemented
the respawnAndClear interface to perform some initialization settings.

• respawnAndClear(bot): Transport the agent to a new location and clear its inventory,
ensuring that the game mode is switched to survival and the game difficulty is switched to
peaceful.

F.2 AGENT CAPABILITY BENCHMARK

In our multi-round Long-term Planning Task, the agent is required to iteratively improve planning
based on combat outcomes, aiming for victory with the highest efficiency, take as little time as
possible. Specifically, if the agent wins in the previous round, it should streamline its planning in
the next round, gathering materials and crafting equipment in less time to enhance time efficiency
(reflected in the experimental results as a decrease in time and LLM iterations); conversely, if it
loses, it must refine its planning to upgrade the quality of weapons and equipment in the planning
list to ensure ultimate success (reflected in the experimental results as an increase in health, or
go from losing to winning). Additionally, when calculating experimental results, we compute the
average and standard deviation for time, LLM iters (LLM iterations) and the health metric only for
victorious outcomes, since a defeat, indicated by health being zero, is not meaningful.

Example of multi-round combat task

Combat Task: 1 Skeleton

Plan list of 1st round:[craft iron sword, craft iron helmet, craft iron chestplate, craft
iron leggings, craft iron boots]
Equipment obtained of 1st round: [iron_helmet, iron_chestplate, iron_leggings, iron_boots,
crafting_table, None]
Time spent on crafting equipment: 15,953 ticks; 8 LLM iters
Remaining Health after the combat: 14.0 / 20 (victory)

—streamlining—

Plan list of 2nd round:[craft iron sword]
Equipment obtained of 2nd round:[None, None, None, None, iron_sword, None]
Time spent on crafting equipment: 3,614 ticks; 4 LLM iters

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Remaining Health after the combat: 9.2 / 20 (victory and more efficiently)

—streamlining—

Plan list of 3rd round:[craft wooden sword]
Equipment obtained of 3rd round:[None, None, None, None, wooden_sword, None]
Time spent on crafting equipment: 416 ticks; 1 LLM iter
Remaining Health after the combat: 9.0 / 20 (victory and even more efficiently)

In our Dynamic-immediate Planning Task, the agent is asked to plan step by step based on en-
vironmental information. We calculate the success rate across various tasks, the average execution
time and LLM iters as well as their standard deviation (only if successful) as evaluation metrics. It is
important to note that skills used in these tasks do not utilize the recursive decomposition mechanism
we propose but require the agent to plan the necessary preparatory steps by itself. The following
outlines the specific skill execution pathways for the five tasks in our experiments:

Skill execution path of the Dynamic-immediate Planning Task

Collect Seeds: Collect Wheat Seeds / Collect Melon Seeds / Collect Pumpkin Seeds
Hoe Farmland: Craft Hoe → Hoe Farmland
Shear Sheep: Craft Shears→Shear Sheep Using Shears
Milk Cow: Craft Bucket→Milk Cow Using Bucket
Cook Meat: Kill Pig→Cook Porkchop / Kill Chicken→Cook Chicken / Kill Sheep→Cook
Mutton / Kill Cow→Cook Beef

In our Autonomous Exploration Task, the agent also needs to plan step by step without a given
goal. Every time a new plan is proposed, the agent retrieves the ten most semantically similar skills
from our skill library and selects one to execute. We tally the number of distinct item types obtained
by the agent in each round, as well as the cumulative number of item types. Here are the distinct
items obtained by the agent from one round of the experiment:

Distinct items obtained within 80 LLM iters

['oak_log', 'stick', 'wooden_sword', 'crafting_table', 'wooden_pickaxe', 'stone_pickaxe',
'oak_planks', 'wheat_seeds', 'dirt', 'cobblestone', 'raw_iron', 'granite', 'andesite', 'cob-
bled_deepslate', 'diorite', 'diamond', 'iron_pickaxe', 'furnace', 'cobblestone_wall', 'coal',
'iron_ingot', 'iron_trapdoor', 'dandelion', 'azure_bluet', 'poppy', 'oxeye_daisy', 'chest', 'cob-
blestone_stairs', 'raw_copper', 'copper_ingot', 'calcite', 'copper_block', 'birch_planks', 'jun-
gle_log', 'arrow', 'bone', 'rotten_flesh'], Num: 37

This result is comparable to the Voyager Wang et al. (2023a) framework that employs GPT-4 for
skill code generation and significantly outperforms Voyager using GPT-3.5.

F.3 ABLATION STUDY

We conduct ablation studies on two core components of the ODYSSEY agent, including the LLM
planner and the open-world skill library.

For the LLM planner ablation, we remove the current environmental information in the planner
system prompt as follows. Moreover, in each task proposed during each round, if the retrieved
skills were not relevant to the current task (i.e., if the semantic retrieval score was below a certain
threshold), the execution of those skills was not carried out.

Planner System Prompt in Ablation

You are a helpful assistant that tells me the next immediate task to do in Minecraft. My
ultimate goal is to discover as many diverse things as possible, accomplish as many diverse

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

tasks as possible and become the best Minecraft player in the world. You can propose next
suitable tasks for me, such as "Mine [block]", "Craft [item]", "Smelt [item]", "Kill [mob]",
"Cook [food]", "Equip" etc. It’s better to be a single phrase.

You should only respond in JSON format as described below:
{
"reasoning": "Do reasoning about what the next task should be.",
"task": "The next task."
}

Ensure the response can be parsed by Python `json.loads`, e.g.: no trailing commas, no
single quotes, etc.

For the open-world skill library ablation, we removed the entire skill library and provided the LLM
only with the necessary interfaces required for composing new skills. Each round’s skill retrieval
and execution were changed to code writing and execution, similar to the approach used in Voy-
ager Wang et al. (2023a). The actor system prompt is shown as follows:

Actor System Prompt in Ablation

You are a helpful assistant that writes Mineflayer javascript code to complete any Minecraft
task specified by me.

—External information—

At each round of conversation, I will give you
Code from the last round: ...
Execution error: ...
Chat log: ...
Biome: ...
Nearby blocks: ...
Nearby entities (nearest to farthest):
Health: ...
Hunger: ...
Position: ...
Equipment: ...
Inventory (xx/36): ...
Chests: ...
Task: ...
Context: ...
Critique: ...

—Directions—

You should then respond to me with
Explain (if applicable): Are there any steps missing in your plan? Why does the code not
complete the task? What does the chat log and execution error imply?
Plan: How to complete the task step by step. You should pay attention to Inventory since it
tells what you have. The task completeness check is also based on your final inventory.
Code:
1) Write an async function taking the bot as the only argument.
2) Reuse the above useful programs as much as possible.
3) ...

—Behaviour constraints—

You should only respond in the format as described below:

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Explain: ...
Plan:
1) ...
2) ...
3) ...
...
Code:
```javascript
// helper functions (only if needed, try to avoid them)
...
// main function after the helper functions
async function yourMainFunctionName(bot) {
// ...
}
```

F.4 RESULTS

We compare smaller LLMs (LLaMA-3-1B and LLaMA-3-3B) on the single-round long-term plan-
ning tasks. The results in Table 7 show that larger model parameters lead to better agent perfor-
mance. Specifically, LLaMA-3-3B generally performs better than LLaMA-3-1B, achieving higher
success rates across the tasks. Moreover, we additionally provide Figure 8 and Figure 9 displaying
the results of the single-round long-term planning task and the dynamic-immediate planning task
for easier visual inspection.

Table 7: Performance comparison of smaller LLMs on the single-round long-term planning task. All
evaluation metrics are calculated only for successful tasks. ± corresponds to one standard deviation
of the average evaluation over successful tasks.

Task Model Success Rate Health Time (min) # LLM Iters

1 zombie

MineMA-8B 8 / 8 19.4 ± 2.3 8.8 ± 5.4 10.0 ± 5.8
LLaMA-3-8B 4 / 8 20.0 ± 0.0 8.3 ± 4.2 6.1 ± 4.1
LLaMA-3-3B 4 / 8 20.0 ± 0.0 19.4 ± 5.3 12.5 ± 5.1
LLaMA-3-1B 2 / 8 20.0 ± 0.0 9.4 ± 2.7 9.5 ± 4.9

1 spider

MineMA-8B 8 / 8 19.3 ± 1.6 8.3 ± 6.7 15.2 ± 6.0
LLaMA-3-8B 4 / 8 19.4 ± 1.0 12.1 ± 3.8 8.4 ± 3.5
LLaMA-3-3B 3 / 8 18.1 ± 3.3 9.1 ± 2.8 9.7 ± 5.7
LLaMA-3-1B 2 / 8 19.5 ± 0.7 9.8 ± 1.3 8.5 ± 6.4

1 skeleton

MineMA-8B 8 / 8 13.6 ± 5.9 8.6 ± 7.3 12.1 ± 7.0
LLaMA-3-8B 4 / 8 17.6 ± 2.7 8.1 ± 3.5 8.9 ± 3.7
LLaMA-3-3B 4 / 8 18.5 ± 1.5 11.5 ± 7.2 12.5 ± 6.4
LLaMA-3-1B 3 / 8 19.6 ± 0.5 14.0 ± 8.6 10.3 ± 9.2

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

0
20
40
60
80

100

S
uc

ce
ss

 R
at

e
(%

)

x

0

5

10

15

20

H
ea

lth

x xx xx x

0
5

10
15
20
25

Ti
m

e(
m

in
)

x

1 z
om

bie

1 s
pid

er

1 s
ke

let
on

1 z
om

bif
ied

 pi
gli

n

1 e
nd

erm
an

1 z
om

bie
, 1

 sp
ide

r

1 z
om

bie
, 1

 sk
ele

ton

3 z
om

bie
s

1 z
om

bie
 vi

lla
ge

r

1 c
av

e s
pid

er

1 w
ith

er
sk

ele
ton

co
ok

 m
ea

t

an
im

al
hu

sb
an

dry

Tasks

0

25

50

75

100

LL
M

 it
er

s

x

Voyager with GPT-4-o-mini LLaMA-3-8B MineMA-8B

Figure 8: Performance comparison of different models on the single-round long-term planning task.
“Health” refers to the remaining health points. “# LLM iters” is the number of LLM iterations (call-
ing LLM) required to complete the task. “Time (min)” refers to the minutes spent in both gathering
materials and crafting equipment to defeat different monsters. All evaluation metrics are calculated
only for successful tasks. ± corresponds to one standard deviation of the average evaluation over
successful tasks. Bold and italics mean the best and the second-best results. “x” indicates that health
is not a relevant metric in the cook meat and animal husbandry scenarios, or all tasks fail.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

0
20
40
60
80

100

Su
cc

es
s

R
at

e
(%

)

x x x x xx

0
10
20
30

Ti
m

e
(m

in
)

x x x x xx

Coll
ec

t S
ee

ds

Hoe
 Farm

lan
d

She
ar

She
ep

Milk
Cow

Coo
k M

ea
t

Obta
in

Le
ath

er

Mak
e S

ug
ar

Coll
ec

t W
ate

r

Tasks

0
20
40
60
80

LL
M

 It
er

s

x x x x xx

Baichuan2-7B Qwen2-7B MineMA-8B MineMA-70B

Figure 9: Performance comparison of different models on the dynamic-immediate planning task.
All evaluation metrics are calculated only for successful tasks. “x” indicates that all tasks fail.

40

	Introduction
	Open-World Skill-based Interactive Agent
	Open-World Skill Library
	bluePlanner-Actor-Critic Architecture

	Fine-tune Minecraft LLM
	Agent Capability Benchmark
	Experiments
	blueOpen-World Skill Library
	Agent Capability Benchmark
	Long-term Planning Task
	blueDynamic-immediate Planning Task
	Autonomous Exploration Task

	Ablation Study

	Related Works
	Conclusion
	Appendix
	 Appendix
	Discussion on Societal Impacts
	Discussion on Migrating Odyssey to Other Domains
	Open-World Skill-based Interactive Agent
	Open-World Skill Library
	Primitive skills
	Compositional skills

	LLM Planner
	Long-term Planning
	Dynamic-immediate Planning
	Autonomous Exploration

	LLM Actor
	LLM Critic

	Fine-tune Minecraft LLM
	Dataset Generation
	Data Cleaning
	Q&A Pairs
	Instruction Datasets Generation Prompts

	Model Fine-tuning
	Model Evaluation
	Evaluation datasets creating process
	Evaluation results

	Agent Capability Benchmark
	Long-term Planning Task
	Dynamic-immediate Planning Task
	Autonomous Exploration Task
	Specific Agent Capability Requirements for Different Tasks

	Experiments
	Experimental Details
	Agent Capability Benchmark
	Ablation Study
	Results

